• 제목/요약/키워드: p38 MAPK pathway

검색결과 260건 처리시간 0.026초

Eucommia ulmoides Extract Stimulates Glucose Uptake through PI 3-kinase Mediated Pathway in L6 Rat Skeletal Muscle Cells

  • Hong, Eui-Jae;Hong, Seung-Jae;Jung, Kyung-Hee;Ban, Ju-Yeon;Baek, Yong-Hyeon;Woo, Hyun-Su;Park, Dong-Suk
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.224-229
    • /
    • 2008
  • Eucommia ulmoides (Duchung) is commonly used for treatment of diabetes in Korean traditional medicine. However, the exact mechanism of its anti-diabetic effect has not yet been fully elucidated. In this study, the effect of E. ulmoides extract on glucose uptake was investigated in L6 rat skeletal muscle cells. E. ulmoides extract stimulated the activity of phosphatidylinositol (PI) 3-kinase that is a major regulatory molecule in glucose uptake pathway. Protein kinase B (PKB) and protein kinase C-${\xi}$ (PKC-${\xi}$), downstream mediators of PI 3-kinase, were also activated by E. ulmoides extract. We assessed the activity of AMP-activated protein kinase (AMPK), another regulatory molecule in glucose uptake pathway. Phosphorylation level of AMPK did not change with treatment of E. ulmoides extract. Phosphorylations of p38 mitogen activated protein kinase (p38 MAPK) and acetyl-CoA carboxylase (ACC), downstream mediators of AMPK, were not significantly different. Taken together, our results suggest that E. ulmoides may stimulate glucose uptake through PI 3-kinase but not AMPK in L6 skeletal muscle cells.

Anti-inflammatory Effect of Leaves Extracts from Aralia cordata through Inhibition of NF-κB and MAPKs Signaling in LPS-stimulated RAW264.7 Cells

  • Ji, Eo Hyun;Kim, Da Som;Sim, Su Jin;Park, Gwang Hun;Song, Jeong Ho;Jeong, Jin Boo;Kim, Nahyun
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.634-640
    • /
    • 2018
  • Aralia cordata (A. cordata), which belongs to Araliaceae, is a perennial herb widely distributed in East Asia. We evaluated the anti-inflammatory effect of stems (AC-S), roots (AC-R) and leaves (AC-L) extracted with 100% methanol of A. cordata and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. The AC-L showed a strong anti-inflammatory activity through inhibition of NO production. AC-L dose-dependently inhibited NO production by suppressing iNOS, COX-2 and $IL-{\beta}$ expression in LPS-stimulated RAW264.7 cells. AC-L inhibited the degradation and phosphorylation of $I{\kappa}B-{\alpha}$, which donated to the inhibition of p65 nuclear accumulation and $NF-{\kappa}B$ activation. Furthermore, AC-L suppressed the phosphorylation of ERK1/2 and p38. These results suggested that AC-L may utilize anti-inflammatory activity by blocking $NF-{\kappa}B$ and MAPK signaling pathway and indicated that the AC-L can be used as a natural anti-inflammatory drugs.

Inhibition of MMP-2 and MMP-9 Activities by Limonium tetragonum Extract

  • Bae, Min-Joo;Karadeniz, Fatih;Lee, Seul-Gi;Seo, Youngwan;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.38-43
    • /
    • 2016
  • Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that take important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Natural products are on the rise for their potential to provide remarkable health benefits. In this context, halophytes have been of interest in the nutraceutical field with reported instances of isolation of bioactive compounds. In this study, Limonium tetragonum, an edible halophyte, was studied for its ability to inhibit MMP-2 and -9 using HT1080 fibrosarcoma cells. Results showed that L. tetragonum extract was able to inhibit the enzymatic activity and mRNA expression of MMP-2 and -9 according to gelatin zymography and RT-PCR assays, respectively, but it was not able to significantly change the MMP pathway related factors such as tissue inhibitors of metalloproteinases. Also, Mitogen-activated protein kinases pathway-related protein levels and their phosphorylation were assayed. While the phosphorylated p38 levels were decreased, extracellular signal-regulated kinase and c-Jun N-terminal kinase were not affected by L. tetragonum treatment. In conclusion, it was suggested that L. tetragonum contains substances acting as MMP inhibitors on enzymatic activity rather than intracellular pathway intervention, which could be useful for further utilization of L. tetragonum as a source for anti-MMP agents.

Signal Transduction Events Elicited by Natural Products: Role of MAPK and Caspase Pathways in Homeostatic Response and Induction of Apoptosis

  • Kong, Ah-Ng Tony;Yu, Rong;Chen, Chi;Mandlekar, Sandhya;Primiano, Thomas
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2000
  • Many natural products elicit diverse pharmacological effects. Using two classes of potential chemopreventive compounds, the phenolic compounds and the isothiocyanates, we review the potential utility of two signaling events, the mitogen-activated protein kinases (MAPKs) and the ICE/Ced-3 proteases (caspases) stimulated by these agents in mammalian cell lines. Studies with phenolic antioxidants (BHA, tBHQ), and natural products (flavonoids; EGCG, ECG, and isothiocyanates; PEITC, sulforaphane), provided important insights into the signaling pathways induced by these compounds. At low concentrations, these chemicals may activate the MAPK (ERK2, JNK1, p38) leading to gene expression of survival genes (c-Fos, c-Jun) and defensive genes (Phase II detoxifying enzymes; GST, QR) resulting in survival and protective mechanisms (homeostasis response). Increasing the concentrations of these compounds will additionally activate the caspase pathway, leading to apoptosis (potential cytotoxicity). Further increment to suprapharmacological concentrations will lead to nonspecific necrotic cell death. The wider and narrow concentration ranges between the activation of MAPK/gene induction and caspases/cell death exhibited by phenolic compounds and isothiocyanates, respectively, in mammalian cells, may reflect their respective therapeutic windows in vivo. Consequently, the studies of signaling pathways elicited by natural products will advance our understanding of their efficacy and safety, of which many man become important therapeuitc drugs of the future.

  • PDF

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok;Ryu, Hyung Won;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Yong Wook;Park, Jong Chun;Jeong, Il Yun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.288-294
    • /
    • 2014
  • Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Leptin stimulates IGF-1 transcription by activating AP-1 in human breast cancer cells

  • Min, Dong Yeong;Jung, Euitaek;Kim, Juhwan;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.385-390
    • /
    • 2019
  • Leptin, an adipokine regulating energy metabolism, appears to be associated with breast cancer progression. Insulin-like growth factor-1 (IGF-1) mediates the pathogenesis of breast cancer. The regulation of IGF-1 expression by leptin in breast cancer cells is unclear. Here, we found that leptin upregulates IGF-1 expression at the transcriptional level in breast cancer cells. Activating protein-1 (AP-1)-binding element within the proximal region of IGF-1 was necessary for leptin-induced IGF-1 promoter activation. Forced expression of AP-1 components, c-FOS or c-JUN, enhanced leptin-induced IGF-1 expression, while knockdown of c-FOS or c-JUN abrogated leptin responsiveness. All three MAPKs (ERK1/2, JNK1/2, and p38 MAPK) mediated leptin-induced IGF-1 expression. These results suggest that leptin contributes to breast cancer progression through the transcriptional upregulation of leptin via the MAPK pathway.

Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway

  • Yeon, Jeong-Tae;Choi, Sik-Won;Park, Kie-In;Choi, Min-Kyu;Kim, Jeong-Joong;Youn, Byung-Soo;Lee, Myeung-Su;Oh, Jae-Min
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.171-176
    • /
    • 2012
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) triggers the differentiation of bone marrow-derived monocyte/macrophage precursor cells (BMMs) of hematopoietic origin into osteoclasts through the activation of mitogen-activated protein (MAP) kinases and transcription factors. Recently, reactive oxygen species (ROS) and antioxidant enzymes were shown to be closely associated with RANKL-mediated osteoclast differentiation. Although glutaredoxin2 (Glrx2) plays a role in cellular redox homeostasis, its role in RANKL-mediated osteoclastogenesis is unclear. We found that Glrx2 isoform b (Glrx2b) expression is induced during RANKLmediated osteoclastogenesis. Over-expression of Glrx2b strongly enhanced RANKL- mediated osteoclastogenesis. In addition, Glrx2b-transduced BMMs enhanced the expression of key transcription factors c-Fos and NFATc1, but pre-treatment with SB203580, a p38-specific inhibitor, completely blocked this enhancement. Conversely, down-regulation of Glrx2b decreased RANKL- mediated osteoclastogenesis and the expression of c-Fos and NFATc1 proteins. Also, Glrx2b down-regulation attenuated the RANKL-induced activation of p38. Taken together, these results suggest that Glrx2b enhances RANKL-induced osteoclastogenesis via p38 activation.

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.

Anti-inflammatory effect of ozonated krill (Euphausia superba) oil in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Hong-Deok;Lee, Soo-Bin;Ko, Seok-Chun;Jung, Won-Kyo;Kim, Young-Mog;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • 제21권6호
    • /
    • pp.15.1-15.9
    • /
    • 2018
  • Background: Inflammation has been known to associate with many human diseases. The objective of this study was to evaluate an anti-inflammatory effect of ozonated krill (Euphausia superba) oil, which was prepared by the treatment of krill oil using ozone gas. The anti-inflammatory activity was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: Ozonated krill oil significantly inhibited nitric oxide (NO) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. Ozonated krill oil also reduced the mRNA expression of inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 macrophages. To elucidate the mechanism underlying the anti-inflammatory activity of ozonated krill oil, we evaluated the effects of ozonated krill oil on the activation of mitogen-activated protein kinases (MAPKs) pathway. Ozonated krill oil suppressed the LPS-stimulated phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). Conclusion: This study revealed that the ozonated krill oil exhibited an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages. To the best of our knowledge, this is the first report that ozonated krill oil suppressed pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 macrophages by inhibiting the phosphorylation of p38 MAPK and JNK.