• Title/Summary/Keyword: p34$^{cdc2}$ protein kinase

Search Result 4, Processing Time 0.018 seconds

Protein kinase와 cell cycle

  • 유일재
    • The Microorganisms and Industry
    • /
    • v.19 no.2
    • /
    • pp.2-10
    • /
    • 1993
  • 이 총론에서는 cell cycle의 조절에 관계하는 p34cdc kinase의 특성과 기질 그리고 cell cycle에서의 역할을 살펴보고, 또 cell cycle에서와 여러가지 세포내의 현상에 중요한 역할을 하는 것으로 알려진 casein kinase II의 특성과 기질 그리고 cell cycle에서의 역할을 살펴보고자 한다. 그리고 이런 효소들을 연구하는 데 필수적인 방법이나 시약들로 소개하고자 한다.

  • PDF

Effect of benzo(a)pyrene and mitomycine C on HeLa cell division cycle

  • Yu, Il-Je;Lim, Cheol-Hong;Kim, Hyo-Jung;Chung, Kyu-Hyuk;Song, Kyung-Seuk;Han, Jeong-Hee;Chung, Yong-Hyun
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2001
  • Recently, there has been significant progress in understanding the control process of the cell division cycle. To investigate the influence of toxic substances on the cell cycle, the effect of benzo(a)pyrene (BAP) and mitomycine C (MMC) on synchronized HeLa cells was analyzed during the cell cycle. To synchronize the HeLa cells, 10$^{6}$ cells were grown for 1 day and then treated with 1 mM hydroxyurea for 14 h. The arrested cells were then allowed to proceed through their cell cycle by removing the hydroxyurea and resupplying a fresh medium. The arrested cells in the G1/S transition then proceeded to the S phase after 4 h, the G2/M phase after 8h, and the G1 phase after 12 h, subsequent to the resupply of a fresh medium. In the untreated HeLa cells, the p34$^{cdc2}$ kinase activity, measured using a p34$^{cdc2}$ specific peptide, peaked after 8h (G2/M) and then declined after 12 h (G1). However, treatment with 30 $\mu$M BAP delayed the peak of the p34$^{cdc2}$ kinase activity. The amount of p34$^{cdc2}$ remained unchanged in the untreated, BAP-, and MMC-treated cells throughout the cell cycle. The cyclin B level peaked after 8 h in the untreated cells, yet peaked after 10-12 h in the BAP-treated cells. There was no significant change in the cyclin B level in the MMC-treated cells.

  • PDF

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.