• Title/Summary/Keyword: p-variate normal distributions

Search Result 2, Processing Time 0.017 seconds

Estimators with Nondecreasing Risk in a Multivariate Normal Distribution

  • Kim, Byung-Hwee;Koh, Tae-Wook;Baek, Hoh-Yoo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.257-266
    • /
    • 1995
  • Consider a p-variate $(p \geq 4)$ normal distribution with mean $\b{\theta}$ and identity covariance matrix. For estimating $\b{\theta}$ under a quadratic loss we investigate the behavior of risks of Stein-type estimators which shrink the usual estimator toward the mean of observations. By using concavity of the function appearing in the shrinkage factor together with new expectation identities for noncentral chi-squared random variables, a characterization of estimators with nondecreasing risk is obtained.

  • PDF

On The Derivation of a Certain Noncentral t Distribution

  • Gupta, A.K.;Kabe, D.G.
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.2
    • /
    • pp.182-185
    • /
    • 1990
  • Let a p-component vector y have a p-variate normal distribution $N(b\theta, \Sigma), \Sigma$ unknown, b specified, then for testing $\theta = 0$ against general $\theta$, Khatri and Rao (1987) derive a certain t test and obtain its power function. This paper presents a direct derivation of this power function in terms of the original variates unlike Khatri and Rao (1987) who resort to the canonical transformations of the original variates and the conditional distributions.

  • PDF