• Title/Summary/Keyword: p-multiplier

Search Result 92, Processing Time 0.02 seconds

Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$) (GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계)

  • Park, Seung-Yong;Hwang, Jong-Hak;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.

Design of the Multiplier in case of P=2 over the Finite Fields based on the Polynomial (다항식에 기초한 유한체상의 P=2인 경우의 곱셈기 설계)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • This paper proposes the constructing method of effective multiplier based on the finite fields in case of P=2. The proposed multiplier is constructed by polynomial arithmetic part, mod F(${\alpha}$) part and modular arithmetic part. Also, each arithmetic parts can extend according to m because of it have modular structure, and it is adopted VLSI because of use AND gate and XOR gate only. The proposed multiplier is more compact, regularity, normalization and extensibility compare with earlier multiplier. Also, it is able to apply several fields in recent hot issue IoT configuration.

A Fast-Locking All-Digital Frequency Multiplier (고속-락킹 디지털 주파수 증배기)

  • Lee, Chang-Jun;Kim, Jong-Sun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1158-1162
    • /
    • 2018
  • A fast-lock multiplying delay-locked loop (MDLL)-based digital clock frequency multiplier with an anti-harmonic lock capability is presented. The proposed digital frequency multiplier utilizes a new most-significant bit (MSB)-interval search algorithm to achieve fast-locking time without harmonic lock problems. The proposed digital MDLL frequency multiplier is designed in a 65nm CMOS process, and the operating output frequency range is from 1 GHz to 3 GHz. The digital MDLL provides a programmable fractional-ratio frequency multiplication ratios of N/M, where N = 1, 4, 5, 8, 10 and M = 1, 2, 3, respectively. The proposed MDLL consumes 3.52 mW at 1GHz and achieves a peak-to-peak (p-p) output clock jitter of 14.07 ps.

A Parallel Multiplier By Mutidigit Numbers Over GF($P^{nm}$) (GF($P^{nm}$)상의 다항식 분할에 의한 병렬 승산기 설계)

  • 오진영;윤병희나기수김흥수
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.771-774
    • /
    • 1998
  • In this paper proposes a new bit-parallel structure for a multiplier over GF((Pn)m), with k-nm. Mastrovito Multiplier, Karatsuba-ofman algorithm are applied to the multiplication of polynomials over GF(2n). This operation has a complexity of order O(k log p3) under certain constrains regardig k. A complete set of primitive field polynomials for composite fields is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(Pk) with low gate counts and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF

DEFICIENCY ZERO NON-METACYCLIC p-GROUPS OF ORDER LESS THAN 1000

  • Jamali, Ali-Reza
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.303-306
    • /
    • 2004
  • There are 49 non-metacyclic p-groups of order less than 1000 with trivial Schur multiplier. In this paper we give a list of deficiency zero presentations for these groups.

Design of $GF(3^m)$ Current-mode CMOS Multiplier ($GF(3^m)$상의 전류모드 CMOS 승산기 설계)

  • Na, Gi-Soo;Byun, Gi-Young;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.54-62
    • /
    • 2004
  • In this paper, we discuss on the design of a current mode CMOS multiplier circuit over $GF(3^m)$. Using the standard basis, we show the variation of vector representation of multiplicand by multiplying primitive element α, which completes the multiplicative process. For the $GF(3^m)$ multiplicative circuit design, we design GF(3) adder and multiplier circuit using current mode CMOS technology and get the simulation results. Using the basic gates - GF(3) adder and multiplier, we build the $GF(3^m)$ multiplier circuit and show the examples for the case m=3. We also propose the assembly of the operation blocks for a complete $GF(3^m)$ multiplier. Therefore, the proposed circuit is easily extensible to other p and m values over $GF(p^m)$ and has advantages for VLSI implementation. We verify the validity of the proposed circuit by functional simulations and the results are provided.

  • PDF

Scalable Dual-Field Montgomery Multiplier Using Multi-Precision Carry Save Adder (다정도 CSA를 이용한 Dual-Field상의 확장성 있는 Montgomery 곱셈기)

  • Kim, Tae-Ho;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.131-139
    • /
    • 2008
  • This paper presents a scalable dual-field Montgomery multiplier based on a new multi-precision carry save adder(MP-CSA), which operates in both types of finite fields GF(p) and GF($2^m$). The new MP-CSA consists of two carry save adders(CSA). Each CSA is composed of n = [w/b] carry propagation adders(CPA) for a modular multiplication with w-bit words, where b is the number of dual field adders(DFA) in a CPA. The proposed Montgomery multiplier has roughly the same timing complexity compared with the previous result, however, it has the advantage of reduced chip area requirements. In addition, the proposed circuit produces the exact modular multiplication result at the end of operation unlike the previous architecture. Furthermore, the proposed Montgomery multiplier has a high scalability in terms of w and m. Therefore, it can be used to multiplier over GF(p) and GF($2^m$) for cryptographic applications.

Low-Voltage CMOS Analog Four-Quadrant Multiplier (저전압 CMOS 아날로그 4상한 멀티플라이어)

  • 유영규;박종현;최현승;김동용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.84-88
    • /
    • 2000
  • In this paper, a low voltage CMOS analog four-quadrant multiplier is presented. The proposed multiplier is composed of two fully differential transconductors and lowers supply voltage down to VT+2VDS,sat+VDS,triode. The designed analog four-quadrant multiplier has simulated by HSPICE using 0.25㎛ n-well CMOS process with a 1.2V supply voltage. Simulation results show that the THD can be 1.28% at maximum differential input of 0.7VP-P.

  • PDF

Cell array multiplier in GF(p$^{m}$ ) using Current mode CMOS (전류모드 CMOS를 이용한 GF(P$^{m}$ )상의 셀 배열 승산기)

  • 최재석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, a new multiplication algorithm which describes the methods of constructing a multiplierover GF(p$^{m}$ ) was presented. For the multiplication of two elements in the finite field, the multiplication formula was derived. Multiplier structures which can be constructed by this formula were considered as well. For example, both GF(3) multiplication module and GF(3) addition module were realized by current-mode CMOS technology. By using these operation modules the basic cell used in GF(3$^{m}$ ) multiplier was realized and verified by SPICE simulation tool. Proposed multipliers consisted of regular interconnection of simple cells use regular cellular arrays. So they are simply expansible for the multiplication of two elements in the finite field increasing the degree m.

  • PDF