• Title/Summary/Keyword: p-dopant

Search Result 185, Processing Time 0.029 seconds

Electrochemical Properties of Polypyrrole-Glucose Oxidase Enzyme Electrode Depending on Dopant Size (Polypyrrole-Glucose Oxidase 효소전극의 배위자 크기에 따른 전기 화학적 특성)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.745-748
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-T S. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Comparative Study on Two Types of Silicon p-n Junction for Photovoltaic and Electronvoltaic Cells

  • Lee, Hee-Yong;Lee, Woo-Kong
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 1973
  • The photovoltaic and the electronvoltaic cells have been obtained by forming Sb-implanted n- on p-type and In-implanted p- on n-type silicon p-n junctions Such shallow implantations into silicon wafers due to each dopant were done by the VDH-Implanter. The two types of the silicon p-n junction for these cells have shown special features on their various characteristics to be fitted for the direct energy conversions. The results of the comparative study on both of these cells are described in this article.

  • PDF

Growth of p-ZnO by RF-DC magnetron co-sputtering (RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.277-280
    • /
    • 2004
  • p-ZnO films have been grown on (0001) sapphire substrates by RF-DC magnetron co-sputtering. The p-ZnO single crystalline thin films of the thickness about 120 nm were grown successfully. The dopant (Aluminum) was sputtered simultaneously from Al metal target by DC sputtering during rf-magnetron sputtering of ZnO at the substrate temperatures of $400^{\circ}C$ and $600^{\circ}C$ respectively. The crystallinity and optical properties of as-grown P-ZnO films have been characterized.

Fabrication of 5,000V, 4-Inch Light Triggered Thyristor using Boron Diffusion Process and its Characterization (Boron 확산공정을 이용한 5,000V, 4인치 광 사이리스터의 제작 및 특성 평가)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jongil;Lee, Byungha;Bae, Youngseok;Koo, Insu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.411-418
    • /
    • 2019
  • Light-triggered thyristors (LTTs) are essential components in high-power applications, such as HVDC transmission and several pulsed-power applications. Generally, LTT fabrication includes a deep diffusion of aluminum as a p-type dopant to form a uniform p-base region, which needs careful concern for contamination and additional facilities in silicon semiconductor manufacturing factories. We fabricated 4-inch 5,000 V LTTs with boron implantation and diffusion process as a p-type dopant. The LTT contains a main cathode region, edge termination designed with a variation of lateral doping, breakover diode, integrated resistor, photosensitive area, and dV/dt protection region. The doping concentration of each region was adjusted with different doses of boron ion implantation. The fabricated LTTs showed good light triggering characteristics for a light pulse of 905 nm and a blocking voltage (VDRM) of 6,500 V. They drove an average on-state current (ITAVM) of 2,270 A, peak nonrepetitive surge current (ITSM) of 61 kA, critical rate of rise of on-state current (di/dt) of 1,010 A/㎲, and limiting load integral (I2T) of 17 MA2s without damage to the device.

A new formation method of silicon $p^+$-n-$n^+$junctions by VDH-implanter (VDH이온주입기에 의한 실리콘 $p^+$-n-$n^+$접합의 새로운 형성법에 관한 연구)

  • 최원은
    • 전기의세계
    • /
    • v.22 no.5
    • /
    • pp.5-11
    • /
    • 1973
  • A new method of forming silicon p$^{+}$-n-n$^{+}$ junctions has been attempted by using the VDH-Implanter (Vacuum Discharge and Heating). Each of p$^{+}$-n and n-n$^{+}$ junctions was formed on both sides of an n-type silicon substrate by means of predeposition of each dopant and their bombarding due to rarefied air ions together with the preheating of the substrate in the implanter. The recifying principle of the p$^{+}$-n-n$^{+}$ junctions is thought to be based on the theory of double injection. The I-V characteristic of the diode has shown that it has a fairly high forward current density with the desirable rise due to vary low voltage though the reverse voltage is a little low on account of the low resistivity of the silicon substrate.n substrate.

  • PDF

A study on property of crystalline silicon solar cell for variable annealing temperature of SOD (SOD 온도 가변을 이용한 결정질 태양전지 특성 연구)

  • Song, Kyuwan;Jang, Juyeon;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.124.1-124.1
    • /
    • 2011
  • 결정질 태양전지에서 도핑(Doping)은 반도체(Semiconductor)의 PN 접합(Junction)을 형성하는 중요한 역할을 한다. 도핑은 반도체에 불순물(Dopant)을 주입하는 공정으로 고온에서 진행되며 온도는 중요한 변수(Parameter)로 작용한다. 본 연구에서는 여러 가지 도핑 방법 중 SOD(Spin-On Dopant)를 이용하여 온도에 따른 도핑 결과와 특성을 분석 하였다. P-type 웨이퍼(Wafer)에 SOD를 이용하여 불순물을 증착 후 Hot-plate에서 15분간 Baking 하였다. Baking된 웨이퍼는 노(Furnace)에 넣고 $860^{\circ}C{\sim}880^{\circ}C$까지 $10^{\circ}C$씩 가변하였다. 각각의 조건에 대해 Lifetime과 Sheet Resistance을 측정하였고, 그 결과 $880^{\circ}C$에서의 Lifetime이 $23.58{\mu}s$$860^{\circ}C$에 비해 235.8% 증가하여 가장 우수 하였으며, Sheet Resistance 또한 $68{\Omega}$/sq로 $860^{\circ}C$에서 가장 우수하게 측정되었다. SOD의 속도 가변에 따른 특성 변화를 보기 위해 온도는 $880^{\circ}C$에 고정한 후 속도를 3000rpm~4500rpm까지 500rpm간격으로 1시간동안 실험한 결과 rpm 속도에 따른 lifetime 변화는 거의 없었으며, Sheet Resistance는 3000rpm에서 $63{\Omega}$/sq로 가장 우수 하였다. 본 연구를 통해 온도와 Spin rpm에 따른 특성을 확인한 결과 온도가 높을 때 Sheet Resistance가 가장 안정화 되며, lifetime이 더욱 우수한 것을 확인할 수 있었다.

  • PDF

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

All Non-Dopant RGB Composing White Organic Light-Emitting Diodes

  • Yeh, Shi-Jay;Chen, Hung-Yang;Wu, Min-Fei;Chan, Li-Hsin;Chiang, Chih-Long;Yeh, Hsiu-Chih;Chen, Chin-Ti;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1583-1586
    • /
    • 2006
  • All non-dopant white organic light-emitting diodes (WOLEDs) have been realized by using solid state highly fluorescent red bis(4-(N-(1- naphthyl)phenylamino)phenyl)fumaronitrile (NPAFN) and amorphous bipolar blue light-emitting 2-(4- diphenylamino)phenyl-5-(4-triphenylsilyl)phenyl- 1,3,4-oxadiazole (TPAOXD), together with well known green fluorophore tris(8- hydroxyquinolinato)aluminum $(Alq_3)$. The fabrication of multilayer WOLEDs did not involve the hard-tocontrol doping process. Two WOLEDs, Device I and II, different in layer thickness of $Alq_3$, 30 and 15 nm, respectively, emitted strong electroluminescence (EL) as intense as $25,000\;cd/m^2$. For practical solid state lighting application, EL intensity exceeding $1,000\;cd/m^2$ was achieved at current density of $18-19\;mA/cm^2$ or driving voltage of 6.5-8 V and the devices exhibited external quantum efficiency $({\eta}_{ext})$ of $2.6{\sim}2.9%$ corresponding to power efficiency $({\eta}_P)$ of $2.1{\sim}2.3\;lm/W$ at the required brightness.

  • PDF

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering PMN-PNN-PZT Ceramics according to the addition of dopant (불순물 첨가에 따른 저온소결 PMN-PNN-PZT 세라믹스의 압전 및 유전특성)

  • Lee, Sang-Ho;Lee, Chang-Bae;Jeong, Gwang-Hyeon;Yoo, Joo-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.33-34
    • /
    • 2005
  • In this study, in odor to develop low temperature sintering multilayer piezoelectric actuator and ultrasonic vibrator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids and their piezoelectric and dielectric characteristics were investigated according to the addition of dopant CuO and $Fe_2O_3$, respectively. The CuO added PMN-PNN-PZT ceramics improved mechanical quality factor Qm due to the acceptor doping effect. And also, $Fe_2O_3$ reacted as softner in this composition system in addition to the increase of grain size and sinterability. Taking into consideration electromechanical coupling factor kp of 0.62, dielectric constant $\varepsilon_r$, of 1275, Piezoelectric $d_{33}$ constant of 377[pC/N] and mechanical quality factor Qm of 975, it was concluded that the ceramics with the $Fe_2O_3$, added composition sintered at 900[$^{\circ}C$] were best for the multilayer piezoelectric actuator and ultrasonic vibrator application.

  • PDF

Plasma Jet Devices for the Doping Process in Solar Cell

  • Lee, Won-Yeong;Kim, Jung-Gil;Kim, Yun-Jung;Han, Guk-Hui;Yu, Hong-Geun;Kim, Hyeon-Cheol;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.548-548
    • /
    • 2013
  • 태양전지 제작에서 도핑 공정은 실리콘 웨이퍼에 불순물 원자를 주입시켜 p-n 접합을 형성시키는 과정이다. 도핑 공정은 주로 3족 혹은 5족 원소를 사용한다. 기존의 도핑 공정 장치는 소성로 및 레이저 장비를 사용하여 생산단가가 높고, 웨이퍼의 전면 도핑이 힘들다는 단점이 있다. 하지만 플라즈마 제트를 사용한 도핑장치는 저가의 장비를 개발할 수 있고, 전면 도핑이 쉽다는 장점을 가진다. 또한 도핑 농도 및 깊이 조절, 높은 농도의 도핑이 가능하다는 기존 장비의 장점을 유지한다. 플라즈마 제트를 솔라셀 웨이퍼 위에 도포된 dopant material layer에 조사하면 주로 플라즈마와 dopant간의 열적인 반응에 의하여 doping이 된다. 도핑을 위한 플라즈마 제트는 전류량의 조절 및 조사하는 양에 따라서 도핑 온도를 쉽게 조절 가능하다. 본 연구에서는 챔버 내 Ar 가스를 채운 후 플라즈마를 생성시켜 방전 특성을 조사한다. 챔버 내 가스의 압력, 전극과의 거리, 전극의 형태 등 장치의 조건을 변화시켜 특성을 확인하고, 안정적인 플라즈마의 물성을 유지하기 위한 조건을 찾는다. 또한 일반 대기압에서 가스 유량변화, 전극과의 거리, 전극의 형태 등 조건에 따른 방전 특성 및 플라즈마 방출 특성을 조사한다.

  • PDF