• Title/Summary/Keyword: p-adic Euler L-function

Search Result 3, Processing Time 0.014 seconds

GENERALIZED EULER POWER SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.591-600
    • /
    • 2020
  • This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions $$L_E(s,{\chi})={\sum\limits_{n=1}^{\infty}}{\frac{(-1)^n{\chi}(n)}{n^s}},\;Re(s)>0$$. Let Lp,E(s, t; χ) be the p-adic Euler L-function of two variables. In this paper, for any α ∈ ℂp, |α|p ≤ 1, we give a power series expansion of Lp,E(s, t; χ) in terms of the variable t. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that $$E_{-n,{\chi}}(t)={\sum\limits_{m=0}^{\infty}}\(\array{-n\\m}\)E_{-(m+n),{\chi}^{t^m}},\;n{\in}{\mathbb{N}}$$, where t ∈ ℂp with |t|p < 1. Some further properties for Lp,E(s, t; χ) has also been shown.

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.