• Title/Summary/Keyword: p-Laplacian system

Search Result 8, Processing Time 0.021 seconds

Upper and lower solutions for a singular p-Laplacian system

  • Kim, Chan-Gyun;Lee, Eun-Kyoung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.89-99
    • /
    • 2007
  • In this paper, we define the upper and lower solutions for a p-Laplacian system with singular nonlinearity at the boundaries. And we prove the theorem for the upper and power solutions method.

  • PDF

MULTIPLE SOLUTIONS FOR A p-LAPLACIAN SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

  • Zhou, Jun;Kim, Chan-Gyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.99-113
    • /
    • 2014
  • A nonlinear elliptic problem involving p-Laplacian and nonlinear boundary condition is considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameter is small enough.

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.

EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEM WITH CONCAVE-CONVEX NONLINEARITIES

  • Yin, Honghui;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.921-936
    • /
    • 2011
  • In this paper, our main purpose is to establish the existence of weak solutions of a weak solutions of a class of p-q-Laplacian system involving concave-convex nonlinearities: $$\{\array{-{\Delta}_pu-{\Delta}_qu={\lambda}V(x)|u|^{r-2}u+\frac{2{\alpha}}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\;x{\in}{\Omega}\\-{\Delta}p^v-{\Delta}q^v={\theta}V(x)|v|^{r-2}v+\frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\;x{\in}{\Omega}\\u=v=0,\;x{\in}{\partial}{\Omega}}$$ where ${\Omega}$ is a bounded domain in $R^N$, ${\lambda}$, ${\theta}$ > 0, and 1 < ${\alpha}$, ${\beta}$, ${\alpha}+{\beta}=p^*=\frac{N_p}{N_{-p}}$ is the critical Sobolev exponent, ${\Delta}_su=div(|{\nabla}u|^{s-2}{\nabla}u)$ is the s-Laplacian of u. when 1 < r < q < p < N, we prove that there exist infinitely many weak solutions. We also obtain some results for the case 1 < q < p < r < $p^*$. The existence results of solutions are obtained by variational methods.