• Title/Summary/Keyword: p-CLA

Search Result 169, Processing Time 0.025 seconds

Single Incision Laparoscopic Appendectomy for Management of Complicated Appendicitis: Comparison between Single-Incision and Conventional

  • Oh, Yoon Jung;Sung, Nak Song;Choi, Won Jun;Yoon, Dae Sung;Choi, In Seok;Lee, Sang Eok;Moon, Ju Ik;Kwon, Seong Uk;Park, Si Min;Bae, In Eui
    • Journal of Minimally Invasive Surgery
    • /
    • v.21 no.4
    • /
    • pp.148-153
    • /
    • 2018
  • Purpose: Single incision laparoscopic appendectomy (SILA) is a widely used surgical procedure for treatment of appendicitis with better cosmesis. However, many surgeons generally tend to choose conventional multiport laparoscopic appendectomy regarding with complicated appendicitis. The aim of this study is to demonstrate the safety and feasibility of SILA for treatment of complicated appendicitis by comparison with 3-ports conventional laparoscopic appendectomy (CLA). Methods: Retrospective chart review of patients diagnosed appendicitis at single hospital during January 2015 to May 2017 collected 500 patients. Among 134 patients with complicated appendicitis, we compared outcomes for 29 patients who got SILA and 105 patients who got CLA. Results: 179 and 321 patients were treated by SILA and CLA, respectively. 134 (26.8%) patients were treated for complicated appendicitis, 29 patients by SILA and 105 patients by CLA, respectively. There was no case converted to open or added additional trocar in both groups. There were no differences in demographics with regard to age, sex, body mass index (BMI), and American society of anesthesiologists (ASA) scores. There was no difference in mean operating time ($58.97{\pm}18.53$ (SILA) vs. $57.57{\pm}21.48$ (CLA), p=0.751). The drain insertion rate (6.9% vs 37.1%, p=0.001) and the length of hospital stay ($2.76{\pm}1.41$ vs. $3.97{\pm}2.97$, p=0.035) were lower in SILA group with significance. There was no significant difference in the rate of surgical site infection (6.9% vs. 6.7%, p=1.000). Conclusion: This study demonstrates that SILA is a feasible and safe procedure for treatment of complicated appendicitis.

Reduction of Bacterial Mutagenesis of 2-Amino-3-Methylimidazo[4,5-f]quinoline by S-9 Fraction from Mice Treated with Conjugated Linoleic Acid (CLA)

  • Park, Kyung-Ah;Kim, Seck-Jong;Park, Soo-Jahr;Park, Gu-Boo;Lim, Dong-Kil;Bahn, Kyeong-Nyeo;Cho, Yong-Un;Park, Jung H.Y.;Pariza, Michael W.;Ha, Yeongl-Lae
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.1
    • /
    • pp.57-61
    • /
    • 2001
  • Conjugated linoleic acid (CLA), when incorporated into mouse liver microsomal membranes, selectively inhibits the mutagenesis of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). Nine-week old female ICR mice were given (p.o.) 0.1 mL olive oil alone (control), 0.1 mL olive oil plus 0.1 mL linoleic acid, or 0.1 mL olive oil plus 0.1 mL CLA, twice weekly for four weeks. The animals were then sacrificed and liver S-9 fractions were prepared. Activation of IQ for mutagenesis by the liver S-9 from CLA-treated mice was significantly reduced in comparison wit liver S-9 from control or linolic acid-treated mice. By contrast, the activation of 7,12-dimethylbenz[a] anthracene (DMBA) and benzo[a] pyrene (BP) was unaffected. Hence, CLA incorporated into phospholipids may selectively affect cytochrome P450 isozymes responsible for activating IQ, but not those which activate BP or DMBA. The addition of free CLA or the methyl esters of CLA, linoleic acid, or oleic acid, to control S-9 inhibited the activation of all three mutagens (IQ, BP, and DMBA).

  • PDF

The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

  • Heo, Wan;Kim, Eun Tae;Cho, Sung Do;Kim, Jun Ho;Kwon, Seong Min;Jeong, Ha Yeon;Ki, Kwang Seok;Yoon, Ho Baek;Ahn, Young Dae;Lee, Sung Sill;Kim, Young Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

Effect of trans-10, cis-12 Conjugated Linoleic Acid on Production of Prostaglandin E2, Cyclooxygenase-2 and 5-lipoxygenase in Lipopolysaccharide-Stimulated Porcine Peripheral Blood Mononuclear Cells

  • Seo, Hae-Ryun;Ahn, Changhwan;Kang, Byeong-Teck;Kang, Ji-Houn;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.33 no.4
    • /
    • pp.194-199
    • /
    • 2016
  • The objective of this study was to examine the effect of trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) on the expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs). t10c12-CLA was treated with different concentrations in culture medium of LPS$na{\ddot{i}}ve$ and LPS-stimulated PBMCs. The mRNA expressions of prostaglandin $E_2$ ($PGE_2$)-synthase, COX-2 and 5-LOX were measured using quantitative real-time PCR. In addition, the production levels of $PGE_2$ and 5-LOX in culture supernatant from PBMCs with or without LPS were assessed by ELISA. In LPS$na{\ddot{i}}ve$ PBMCs, treatment of t10c12-CLA significantly (p < 0.05) increased the mRNA expressions of PGE2 synthase and 5-LOX compared to vehicle control. Expression of COX-2 mRNA did not show significant difference compared to vehicle control by t10c12-CLA treatment in LPS$na{\ddot{i}}ve$ PBMCs. However, the addition of LPS in PBMCs markedly (p < 0.05) increased the mRNA expression of COX-2, $PGE_2$ synthase and 5-LOX, and also significantly (p < 0.05) enhanced the production of $PGE_2$ and 5-LOX relative to LPS$na{\ddot{i}}ve$ PBMCs, respectively. However, the addition of t10c12-CLA significantly (p < 0.01) suppressed the LPS-induced excessive expression of COX-2, $PGE_2$ synthase, and 5-LOX compared to those of PBMCs treated with LPS alone. The production levels of $PGE_2$ and 5-LOX in culture supernatant from LPS-stimulated PBMCs were also significantly (p < 0.05) inhibited by the treatment of t10c12-CLA compared to LPS alone. These results suggested that t10c12-CLA has an anti-inflammatory effect via dual inhibition of COX-2 and 5-LOX with gene expression and production level in LPS-stimulated porcine PBMCs. Therefore, it was thought that t10c12-CLA can attenuate the inflammatory response by down-regulation of eicosanoids production.

Effects of Protected Conjugated Linoleic Acid Supplementation on Milk Fatty Acid in Dairy Cows

  • Piamphon, N.;Wachirapakorn, Chalong;Wanapat, M.;Navanukraw, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.49-56
    • /
    • 2009
  • The objective was to determine the effects of supplementation of protected conjugated linoleic acid (CLA), CLA-20 comprising 10% each of cis-9, trans-11 and trans-10, cis-12, on milk production and fatty acid profiles in plasma and milk in lactating dairy cows. Five mid-lactation, multiparous crossbred Holstein Friesian cows with average 402${\pm}$20 kg BW were used in a 5${\times}$5 Latin square design for 21-d periods. Cows were given a total mixed ration (TMR) and supplemented with CLA-20 at 0, 20, 40, 80 and 160 g/d. The results showed that dry matter intake depression occurred in cows supplemented with CLA-20 at 160 g/d. Milk production slightly increased when CLA-20 supplementation was at 20, 40 and 80 g/d. However, 3.5% fat-corrected milk (FCM) was not affected by CLA-20 supplementation. Increased levels of CLA-20 supplementation resulted in a significantly decreased percentage of milk fat. Plasma concentrations of fatty acid were not altered by the amounts of CLA-20 supplementation except for the concentration of trans-10, cis-12 CLA. For all dietary treatments, percentages of fatty acids (C4:0, C6:0, C8:0, C13:0, C14:0 C14:1 C15:0 C15:1 C16:0, C16:1, C18:1n9t, C18:2n6t, C18:2n6c, C20:0, C18:3n6, C18:3n3, C20:1 and C20:3n6) in milk fat were similar. Concentrations of C10:0, C11:0, C12:0 and C18:1n9c were decreased cubically and C18:0 was elevated linearly (p<0.01) according to the increased amounts of CLA-20 supplemented. The linear increase was observed for cis-9, trans-11 CLA (0.62, 1.17, 1.94, 1.87 and 1.82% of total fatty acid), trans-10, cis-12 CLA (0.01, 0.63, 0.67, 0.93 and 0.95% of total fatty acid) and total CLA (0.80, 2.25, 3.16, 3.97 and 3.94% of total fatty acid) in milk fat from 0 to 160 g/d of CLA-20 supplement. In conclusion, concentration of cis-9, trans-11 CLA in milk fat was concomitantly elevated at an increasing rate with the increased amounts of CLA-20. Based on the results in this study, supplementation of CLA-20 at 80 g/d optimally enhanced total CLA in milk fat.

Effects of Supplementary Rice Bran and Roasted Soybean in the Diets on Carcass Characteristics and Composition of CLA in Hanwoo Steers (사료 내 미강과 볶은 대두 첨가가 거세한우의 도체특성과 CLA 함량에 미치는 영향)

  • Kim, Sung Il;Lee, Gwang Ho;Choi, Chang Bon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.435-442
    • /
    • 2013
  • This study investigated the carcass characteristics and conjugated linoleic acid (CLA) content in Hanwoo steers that received supplementary rice bran (Rice bran group) and roasted soybeans (Roasted soybean group) into their finishing concentrates. The final body weight was 754.58, 783.33, and 755.67 kg, and the average daily gain was 0.50, 0.57, and 0.50 kg for the Control, Rice bran, and Roasted soybean group, respectively, showing no statistical differences. Feed requirements for the Rice bran group were 14.5% higher than the Control and 12.8% higher than the Roasted soybean group. No statistical differences were found in indices for carcass yield and quality grade between the groups. The composition of c9, t11 CLA in perirenal fats was significantly higher in the Roasted soybean group (0.21%) compared to the Rice bran group (0.15%) and Control (0.16%) groups (p<0.05). The composition of c9, t11 CLA in the M. Longissimus dorsi was also higher in the Roasted soybean group (0.21%) compared to the Control (0.16%) group. The composition of t10, c12 CLA in the M. Longissimus dorsi was statistically lower in the Roasted soybean group compared to the Control group (p<0.05). In perirenal fats, the composition of t11 trans-vaccenic acid (TVA) was significantly (p<0.05) higher in the Roasted soybean group compared to the control group. The TVA composition in the Roasted soybean group increased to 15.09 and 6.92%, respectively, in subcutaneous and M. Longissimus dorsi fats comparing to the Control group, without statistical differences between the treatment groups. In conclusion, rice bran is beneficial for improving feed efficiencies, while roasted soybeans are effective for increasing CLA in the M. Longissimus dorsi of Hanwoo steers.

Effects on the Levels of Dietary Conjugated Linoleic Acid (CLA) Produced from Bio-Diesel By-Products on the Production and Composition of Dairy Cow Milk (바이오디젤유 부산물로 제조한 conjugated linoleic acid(CLA)의 첨가 수준이 젖소의 산유량 및 유성분에 미치는 영향)

  • Kim, Sang-Bum;Ku, Min-Jung;Lim, Dong-Hyun;Lee, Hyun-June;Park, Sung-Jai;Kwon, Eung-Gi;Kim, Sam-Churl;Park, Joong-Kook
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • This study was conducted to determine the effects of increasing the dietary levels of conjugated linoleic acid (CLA) which is produced from bio diesel by-products, on milk yield, milk composition, and blood metabolites of mid-lactating dairy cows. A total of 20 mid-lactating dairy cows ($631{\pm}25.0kg$) were assigned to one of four treatment groups and fed twice daily an equal amount of a basal diet ($NE_L$ 32 Mcal/d, CP 17%) contained 12kg/d of concentrate, 15kg/d of corn silage and 4kg/d of the hay mixture (tall fescue+orchard grass). Conjugated linoleic acid were fed for 2 weeks of adaptation periods and 4 weeks of collection periods at 0 (Control), 50 (T1), 100 (T2) and 150g/d (T3), respectively. By the increases of dietary CLA supplementation, milk yield and 4% fat corrected milk increased, whereas milk fat content decreased (p<0.05). The concentrations of stearic acid and oleic acid decreased with increasing dietary CLA supplementation, while the concentrations of total CLA increased (p<0.05). In conclusion, this study shown that the supplementation of dietary CLA manufactured from bio diesel by-products could improve milk yield and CLA concentrations of milk in mid-lactating dairy cows.

Effects of Diglyceride-Conjugated Linoleic Acid on Proliferation and Differentiation of 3T3-L1 Cells

  • Jeong, Jae-Hwang;Lee, Sang-Hwa;Hue, Jin-Joo;Lee, Yea-Eun;Lee, Young-Ho;Hong, Soon-Ki;Jeong, Seong-Woon;Nam, Sang-Yoon;Yun, Young-Won;Lee, Beom-Jun
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • Conjugated linoleic acid (CLA) has been recently reported to have an anti-obesity effect in animals and humans. The objective of this study was to investigate effects of diglyceride (DG)-CLA on proliferation and differentiation of 3T3-L1 preadipocytes. Cell proliferation was determined using WST-8 analysis and cell differentiation was determined by glycerol-3-phosphate dehydrogenase (GPDH) activity. Lipid accumulation in differentiating 3T3-L1 cells was determined by Oil red O staining. There were four experimental groups including vehicle control (DMSO), CLA, triglyceride (TG)-CLA, and DG-CLA. Treatments of CLA, TG-CLA, and DG-CLA at the concentrations of $10{\sim}1000{\mu}g/ml$ reduced proliferation of preconfluent 3T3-L1 cells in a dose-dependent manner. Among them CLA was the most effective in the proliferation inhibition of preconfluent 3T3-L1 cells with increasing concentrations. Treatments of CLA and DG-CLA at the concentration of $100{\mu}g/ml$ significantly inhibited differentiation of postconfluent 3T3-L1 cells as measured by GPOH activity (p<0.05). In addition, treatments of CLA, TG-CLA, and DG-CLA effectively inhibited lipid accumulation during differentiation of 3T3-L 1 cells. OG-CLA had the most inhibitory effect on the differentiation and lipid accumulation. These results suggest that the compounds including CLA have a respectable anti-obesity effect and that consumption of DG-CLA as a dietary oil may give a benefit for controlling overweight in humans.

Effects of Dietary Conjugated Linoleic Acid (CLA) on Antioxidant System in the Liver of Chronically Ethanol-Treated Rats (식이에 첨가한 Conjugated Linoleic Acid (CLA)가 만성적으로 알코올을 섭취한 쥐에서 간조직의 항산화 체계에 미치는 영향)

  • Kim, Se-Na;Kim, Min-Seok;Park, Hyun-Suh
    • Journal of Nutrition and Health
    • /
    • v.40 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • The study was designed to observe antioxidant activities of conjugated linoleic acid (CLA) by determining antioxidant enzyme protein levels [cytochrome P4502 El (CYP2E1), Copper, Zinc-superoxide dismutase (CuZn-SOD), glutathione peroxidase (CSH-Px), glutathione S-transferase (GST)] by Western blot analysis and the levels of ${\alpha}$-tocopherol and 2-thiobarbituric acid reactive substances (TBARS) in the liver of chronically ethanol-treated rats. Sixty Sprague Dawley male rats were divided into 3 groups (Control, EtOH, EtOH+CLA). All rats were fed Lieber-DeCarli liquid diet for 4 weeks by pair-feeding against the EtOH group. The liquid diet was supplemented with 1.77g CLA mixture per kg diet in the EtOH+CLA group. Isocaloric maltose dextrin was added in replace of 50g ethanol (36%kcal) for the Control group. Ethanol ingestion significantly increased the levels of CYP2E1 protein and TBARS, but significantly reduced CuZn-SOD protein level and increased GST protein level. There was no significant effect on the level of GSH-Px protein and ${\alpha}$-tocopherol in the liver by ethanol. CLA supplementation with ethanol significantly increased the levels of CuZn-SOD, GSH-Px and GST and also significantly attenuated TBARS level, whereas there was no significant effect on the levels of CYP2E1 protein and ${\alpha}$-tocopherol by CLA. Overall, the CLA supplemented to ethanol could significantly increase the levels of CuZn-SOD, GSH-Px and GST proteins and reduce the level of TBARS in the liver of chronically ethanol-treated rats.

Conjugated Linoleic Acid (CLA) Production in the Rumen -Roles of Butyrivibrio fibrisolvens A38

  • Kim, Dae-Ok;Kim, Tae-Wan;Heo, Ho-Jin;Imm, Jee-Young;Hwang, Han-Joon;Oh, Sejong;Kim, Young-Jun
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is currently under intensive investigation due to its health benefits. A great deal of interest has been paid to the possible health-promoting roles of CLA, but there are not many studies available on the mechanism of CLA production by ruminal microorganisms. CLA is produced as an intermediate of the characteristic biohydrogenation process of linoleic acid(LA) in the rumen and its production has direct relationship to numerous environmental factors including particle association, substrate concentration, forage-to-grain ratio, pH, ionopore, bacterial cell density, etc. Some of these factors were known to affect hydrogenating activities of Butyrivibrio fibrisolvens A38 which is an active rumen bacterium in CLA production. Dairy cow is a main source of CLA, and its level could be increased by dietary manipulation changing the physiological environment of rumen bacteria such as B. fibrisolvens A38. Therefore, the effects of various factors on. ruminal biohydrogenation should be carefully considered to optimize not only CLA production, but also other fatty acid metabolism, both of which are directly affecting nutritional quality and functionality of dairy products. In this review, the relationship between various environmental factors and ruminal CLA production is discussed focusing on the CLA production of B. fibrisolvens A38.