• Title/Summary/Keyword: ozone-water

Search Result 583, Processing Time 0.027 seconds

Demonstration of Low-carbon Pre-oxidation Technology for Algae Using Sodium Permanganate (과망간산나트륨을 활용한 조류 대응 저탄소 전산화기술 실증화 연구)

  • Junsoo, Ha;Daniel Sangdu, Hur;Chaieon, Im;Donghee, Jung;Youngseong, Lim;Jinkyong, Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • This paper is a result of research conducted on the 800,000 m3/d capacity of A Water Treatment Plant (WTP) and 400,000 m3/d capacity of B WTP plant in operation in the Nakdong River region. We evaluated the effect of algae broom on the WTP operation based on the running data of both WTP and the data on the pre-oxidation process field test for algae control using sodium permanganate (SPM) at the B WTP. The study results showed that during the algal bloom period, the coagulant dose increased by 102% in A WTP and 58% in B WTP, respectively, and the chlorine dose also increased by 38% and 29%, respectively, which may affect Total trihalomethane (THM) production. Data such as algal populations and Chl-a, residual chlorine and THM, algal populations, and ozone dose appeared also highly correlated, confirming that algal broom affects WTP operations, including water quality and chemical dosage. As a result of the field test of B WTP, THMs appeared lower than that of the control, suggesting the possibility of the SPM pre-oxidation process as an alternative to algae-related water quality management. Furthermore, in terms of GHG emissions due to energy consumption, it was observed that the pre-oxidation process using SPM was approximately 10.8%, which is a very low ratio compared to the pre-ozonation process. Therefore, these results suggest that the SPM pre-oxidation process can be recommended as an alternative to low-carbon water purification technology.

Extinguishing Charactristics of Water Mist by Discharge Properties (방사특성 변화에 따른 미세물분무의 소화특성)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.41-48
    • /
    • 2001
  • Halogen-based fire suppressing agents have been the most effective fire suppressants and widely used for flammable liquid and electric fire. However they have environmental problems causing stratospheric ozone depletion and globe warming. As a substitution of halon, fire suppression system using fine water mist is one of an effective fire suppressant. Suffocating and cooling effects of water mist are increased by the evaporation characteristics because it has droplet size less than 1,000 $\mu{m}$ and very large surface area. In this study, the extinguishing characteristics of fire was measured with changing of water mist droplet size, flow density; discharge pressure, and fire size. As a result, the extinguishing time of pool fire was shortened with the increase of flow density and in case of low flow density less than 0.5$\pm$0.05 ml/$\textrm{cm}^2$ . min, the extinguishing time was shortened with the increase of droplet size. The cycling discharge was effective for $\eta$-heptane pool fire, and total amount of water mist required to extinguish fire was reduced to a quarter compare with continuous discharge.

  • PDF

Consideration on the Concentration of the Active Substances Produced by the Ballast Water Treatment System (선박평형수 처리장치의 활성물질 농도에 관한 고찰)

  • Kim, Eun-Chan;Oh, Jeong-Hwan;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • The International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Thirty-four ballast water treatment systems were granted IMO active substance basic approval, among which twenty systems were granted final approval. This paper is an in-depth consideration of the mechanism principles of the treatment systems that received active substance basic or final approval from IMO, and on the concentration of Total Residual Oxidant (TRO). The TRO maximum allowable discharge concentration was reduced by neutralization equipment, resulting with a concentration lower than 0.2 ppm. However, between various treatment systems TRO maximum allowable dosage showed large differences, ranging from 1 to 15 ppm. The discrepancies of treatment allowable dosage concentration between different treatment systems are largely due to the properties of species and water conditions such as the temperature and turbidity, rather than the characteristics of treatment systems and the type or presence of filters etc.

Effect of Treatment with Ozonated Water on Shelf Life of Refrigerated Meat (오존수 처리가 냉장 쇠고기의 화학적 품질에 미치는 영향)

  • Kim, Min-Ju;Shin, Han-Seung
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.617-623
    • /
    • 2011
  • Ozone is a strong oxidant and potent disinfecting agent. In this study, volatile basic nitrogen, thiobarbituric acid reactive substances, acid value and pH all of which are quality indicators in meat products, were evaluated. The meat was treated with the ozonated water (0.2 ppm) for 0, 5, 10, 30, and 60 min and then stored at $5^{\circ}C$ for 24 d. The volatile basic nitrogen content of meat was 22.40 mg% after 9 d of storage and 23.24 mg% at 15 d of storage with ozonated water (0.2 ppm) treatment. During 24 d of storage, the pH, thiobarbituric acid reactive substances, and acid value were decreased when subjected to ozonated water treatment. These results suggested that the ozonated water treatment effectively improved the chemical properties and food safety.

Performance Evaluation of R435A on Refrigeration System of Water Purifiers (R435A를 적용한 정수기 냉동시스템의 성능평가)

  • Lee, Yo-Han;Kang, Dong-Gyu;Choi, Hyun-Joo;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • In this study, thermodynamic performance of R435A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 20%R152a/80%RE170 using actual domestic water purifiers. This mixture is numbered and listed as R435A by ASHRAE recently. Test results show that the system performance with R435A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R435A is 11.8% lower than that of HFC134a. The compressor discharge temperature of R435A $8^{\circ}C$ lower than that of HFC134a at the optimum charge. Overall, R435A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Performance of R430A on Refrigeration System of Domestic Water Purifiers (대체냉매 R430A를 적용한 정수기 냉동시스템의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Kim, Kyoung-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • In this study, thermodynamic performance of R430A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 76%R152a124% R600a using actual domestic water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance with R430A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC 134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a at the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

Effect of Ozonated Water Soaking on Adventitious Root Formation of Willow (Salix koreensis) Cuttings (오존수 처리가 버드나무(Salix koreensis) 삽수의 부정근 발생에 미치는 영향)

  • Kim, Sun Woo;Park, Ha Kyu;Hwang, Gyu Baek;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2022
  • To investigate the effects of ozonated water concentration and soaking time on adventitious root formation of willow, we studied the efficiency of root cuttings in the revegetation technology of biological engineering of willows. The ozonated water concentrations were used for 5 minutes and 2 hours at 1, 5, 10, 15, 20 ppm by soaking method and then the shoot characteristics were observed. The number and length of adventitious roots were determined. The results indicated that 20 ppm of ozonated water for 2 hours and 1 ppm of ozonated water for 5 minutes resulted in leaves turned wither away and no adventitious root production. Considering the appearance, number and length of the adventitious root, soaking willow cuttings into the ozonated water with dissolved ozone concentration, 5 ppm for 2 hours and 10-15 ppm for 5 minutes were suitable for generating adventitious roots.

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process (전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화)

  • Ju, Jaehyun;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Growth and Characterization of Conducting ZnO Thin Films by Atomic Layer Deposition

  • Min, Yo-Sep;An, Cheng-Jin;Kim, Seong-Keun;Song, Jae-Won;Hwang, Cheol-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2503-2508
    • /
    • 2010
  • ZnO thin films were grown on Si or $SiO_2$/Si substrates, at growth temperatures ranging from 150 to $400^{\circ}C$, by atomic layer deposition (ALD) using diethylzinc and water. Despite the large band gap of 3.3 eV, the ALD ZnO films show high n-type conductivity, i.e. low resistivity in the order of $10^{-3}\;{\Omega}cm$. In order to understand the high conductivity of ALD ZnO films, the films were characterized with X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, elastic recoil detection, Rutherford backscattering, Photoluminescence, and Raman spectroscopy. In addition, the various analytical data of the ZnO films were compared with those of ZnO single crystal. According to our analytical data, metallic zinc plays an important role for the high conductivity in ALD ZnO films. Therefore when the metallic zinc was additionally oxidized with ozone by a modified ALD sequence, the resistivity of ZnO films could be adjusted in a range of $3.8{\times}10^{-3}\;{\sim}\;19.0\;{\Omega}cm$ depending on the exposure time of ozone.