• Title/Summary/Keyword: ozone level

Search Result 199, Processing Time 0.024 seconds

Decolorization and Degradation Products of Melanoidin by Active Oxygens II. Decolorizatlon and Degradation Products of Melanoidin on Ozonolysis (활성산소종에 의한 Melanoidin의 탈색 및 분해생성물 II. Ozone에 의한 Melanoidin의 탈색 및 분해생성물)

  • KIM Seon-Bong;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 1986
  • Nondialyzable melanoidins prepared from a glucose-glycine system were investigated as to their decolorization and degradation products on of one treatment. Melanoidins were decolorized to degree of $84\%\;and\;97%$ after ozonolysis at $-1^{\circ}C$ for 10 min and 90 min, respectively, and the mean molecular weight of melanoidins decreased from 7,000 to 3,000 after ozonolysis for 40 min. IR measurement showed that the absorption at $1,290\;cm^{-1}$ disappeared and that at $1,720\;cm^{-1}$ newly appeared on ozonolysis, and the absorption at $1,620\;cm^{-1}$ disappeared on acid hydrolysis after ozonolysis. Furthermore, the major degradation products in the ether-soluble fractions obtained from ozone-treated melanoidins were identified as butanedioic acid, glycolic acid, 2-hydroxybutanoic acid and so on. In the aqueous fraction, one or the major products was glycine, which was produced to the level of $1.05\%$ on ozonolysis which increased to $5.75\%$ per melanoidin on acid hydrolysis after ozonolysis. From these findings and the IR results, it is postulated that glycine was considerably incorporated into melanoidin molecules as the amide form.

  • PDF

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E.;Kanda, Isao;Okazaki, Yukiyo;Wakamatsu, Shinji;Basaldud, Roberto;Horikoshi, Nobuji;Ortinez, Jose A.;Ramos-Benitez, Victor R.;Cardenas, Beatriz
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.114-127
    • /
    • 2015
  • In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

Effects of Fertilization on Physiological Parameters in American Sycamore (Platanus occidentalis) during Ozone Stress and Recovery Phase

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.149-158
    • /
    • 2009
  • American sycamore seedlings were grown in chambers with two different ozone concentrations ($O_3$-free air and air with additional $O_3$) for 45 days. Both the control and the $O_3$ chambers included non-fertilized and fertilized plants. After 18 days of $O_3$ fumigation, seedlings were placed in a clean chamber for 27 days. Seedlings under ozone fumigation showed a significant decrease in pigment contents and photosynthetic activity, and a significant increase in lipid peroxidation. Fertilization enhanced physiological damage such as the inhibition of photosynthetic activity and the increase of lipid peroxidation under ozone fumigation. During the recovery phase, the physiological damage level of seedlings increased with ozone fumigation. In addition, physiological damage was observed in the fertilized seedlings. Superoxide dismutase (SOD) and glutathione reductase (GR) activities of $O_3$-treated seedlings increased up to 33.8% and 16.3% in the fertilized plants. The increase of SOD activity was higher in the fertilized plants than in the non-fertilized plants. Negative effects of ozone treatment were observed in the biomass of the leaves and the total dry weight of the fertilized sycamore seedlings. The $O_3$-treated seedlings decreased in stem, root and total dry weight, and the loss of biomass was statistically significant in the fertilized plants. In conclusion, physiological disturbance under normal nutrient conditions has an effect on growth response. In contrast, in conditions of energy shortage, although stress represents a physiological inhibition, it does not seem to affect the growth response.

The Characteristics of THMs Production by Different Disinfection Methods in Swimming Pools Water (수영장 욕조수의 소독방법에 따른 THMs 발생 특성)

  • Lee Jin;Ha Kwang-Tae;Zoh Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.171-178
    • /
    • 2006
  • The objectives of this study were to investigate the formation of trihalomethanes(THMs) and to compare the concentration level of THMs of swimming pools water by different disinfection methods such as chlorine, ozone-chlorine, and salt brine electrolysis generator (SBEG). The concentration of chloroform was the highest in the chlorine system, and the SBEG was the highest in the production of bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform. The average concentration of total trihalomethanes (TTHMs) in three disinfection systems were $64.5{\pm}27.4mg/l(SBEG),\;43.8{\pm}22.3mg/l(chlorine)$, and $30.6{\pm}16.1mg/l(ozone-chlorine)$, respectively. In chlorine and ozone-chlorine disinfection system, chloroform concentration was highest, followed by BDCN, then DBCM. In the SBEG, TTHMs was composed of 42% of chloroform, 28.9% of bromoform, 15.1% of BDCM and 14% of DBCM, respectively. The strongest correlation was obtained in the levels of chloroform and TTHMs in chlorine, and ozone-chlorine disinfection systems from both indoor and outdoor swimming pools ($r=0.989{\sim}0.999$, p<0.01). In the SBEG, the levels of BDCM and TTHMs showed a good correlation (r=0.913, p<0.01). In chlorine and ozone-chlorine disinfection systems at indoor swimming pools, pH, TOC and $KMnO_4$ consumption showed strong correlation with chloroform and TTHMs concentrations (p<0.01). In the SBEG, pH and TOC were also strongly correlated with chloroform (p<0.01). pH and TTHMs were correlated as well (p<0.05).

Retrospective Air Quality Simulations of the TexAQS-II: Focused on Emissions Uncertainty

  • Lee, DaeGyun;Kim, Soontae;Kim, Hyuncheol;Ngan, Fong
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.212-224
    • /
    • 2014
  • There are several studies on the effects of emissions of highly reactive volatile organic compounds (HRVOC) from the industrial sources in the Houston-Galveston-Brazoria (HGB) area on the high ozone events during the Texas Air Quality Study (TexAQS) in summer of 2000. They showed that the modeled atmosphere lacked reactivity to produce the observed high ozone event and suggested "imputation" of HRVOC emissions from the base inventory. Byun et al. (2007b) showed the imputed inventory leads to too high ethylene concentrations compared to the measurements at the chemical super sites but still too little aloft compared to the NOAA aircraft. The paper suggested that the lack of reactivity in the modeled Houston atmosphere must be corrected by targeted, and sometimes of episodic, increase of HRVOC emissions from the large sources such as flares in the Houston Ship Channel (HSC) distributed into the deeper level of the boundary layer. We performed retrospective meteorological and air quality modeling to achieve better air quality prediction of ozone by comparison with various chemical and meteorological measurements during the Texas Air Quality Study periods in August-September 2006 (TexA QS-II). After identifying several shortcomings of the forecast meteorological simulations and emissions inputs, we prepared new retrospective meteorological simulations and updated emissions inputs. We utilized assimilated MM5 inputs to achieve better meteorological simulations (detailed description of MM5 assimilation can be found in F. Ngan et al., 2012) and used them in this study for air quality simulations. Using the better predicted meteorological results, we focused on the emissions uncertainty in order to capture high peak ozone which occasionally happens in the HGB area. We described how the ozone predictions are affected by emissions uncertainty in the air quality simulations utilizing different emission inventories and adjustments.

Variations of Ground-lever Ozone Concentration in Korea during 1991 to 1993 (1991 - 1993년 사이 우리나라의 오존 농도 변화)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.55-66
    • /
    • 1996
  • One-hour average concentrations of ground-level ozone from around 80 monitoring stations in Korea during 1991 to 1993 were analyzed to examine characteristics of the ozone concentration variations. Two types of variations were observed: one was for the Capital area typified by Kwanghwmun, and the other was for the south and east seashore region typified by Tongkwangyang. In the Capital area including Seoul, Inchon, Kyonggi-do and Chunchon, mean daily 1-hout maximum was the highest in June following high monthly averages in spring. But frequent precipitation prevented further rise of daily maximum in July and August even though there were frequent episodes of high concentration exceeding 100ppb. In the south and east seashore region, average concentration was the highest throughout the year, and daily maximum and minimum simultaneously changed owing to small contributions from photochemical reactions. The typical annual variation was spring peak, summer down, and fall rise. Spring peak accompanied an usual observations of background variations at remote sites in the Northern Hemisphere. Riess of average and daily maximum with lower daily minimum in fall were attributable to photochemical reactions.

  • PDF

Discharge and Ozone Generation Characteristics of a Micro-Size Nonthermal Plasma Generator Using Silicon Oxide Film (실리콘 산화막을 이용한 초소형 비열플라즈마 발생장치의 방전 및 오존발생특성)

  • Kang, Jeong-Hoon;Tae, Heung-Sik;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1816-1818
    • /
    • 1996
  • A micro-size nonthermal plasma generator, using a $SiO_2$ film as a dielectric barrier, has been studied experimentally for a high frequency ac voltage in 2LPM oxygen gas fed. The $SiO_2$ film as a micro-size dielectric barrier was made by the wet oxidation of n-type Si wafer($220[{\mu}mt]$). It can be generated ozone, as a nonthermal plasma intensity parameter, at very low level of applied voltage about 1[kV] by using the micro-size dielectric barrier. As a result, in case that have no air gap spacing i.e. surface discharge case shows relatively higher ozone concentration rather than that case of the micro-airgap spacing.

  • PDF

Environmental Distribution of Air Pollutants and Environmental Risk Assessment in Regional Scale

  • Matsumoto, Fumio;Saito, Mitsugu;Otsuka, Naohiro
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • We measured the concentrations of air pollutants at several residential sites, roadside sites and industrial sites in Iwate Prefecture, Japan. And the concentration distributions of air pollutants were estimated by atmospheric dispersion model using air emissions data. Based on those results, we calculated environmental risk of air pollutants emitted in Iwate Prefecture. As a result, it was found that the surround of factories with high emissions and highly toxic chemicals and the roadsides were high risk area, benzo(a)pyrene, formaldehyde and ozone exceeded the $10^{-5}$ risk level. Moreover, we tried to use "Loss of life expectancy: LLE" for an index to explain those risk to general public intelligibly. The total LLE of the carcinogenic chemicals was about 8.6 hours. Moreover, LLE of ozone was about 9.2 hours. Ozone has a big influence compared with the carcinogenic chemicals.

Evaluation of Water Treament System for Phenol Removal in the Nakdong River Basin (낙동강 수계 페놀처리를 위한 정수처리시스템 평가)

  • Kang, Byung-Jae;Chae, Seon-Ha;Lee, Kyung-Hyuk;Jeon, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.609-618
    • /
    • 2009
  • Repeated phenol spill in the Nakdong River has been a big issue in Korea since 1991. In this study, treatment of phenol in each water treatment process and total water treatment system is evaluated. Phenol was highly volatile, easily oxidized by ozone, and readily absorbed onto GAC. When there was phenol of 0.3mg/L in water, by ozonation of 1mg/L or by GAC adsorption with EBCT of 10minutes or longer, it could be treated to lower than 0.005mg/L, the national drinking water standard of phenol. Even when a sufficient contact time(70minutes) was allowed, only 35 to 40% of phenol could be removed by powdered activated carbon(PAC). Based on the test results, it can be concluded that 1.0mg/L or less concentration of phenol can be treated at the plants adopting the combination process of ozone and GAC down to the safe level. In this study, removal characteristics for phenol were evaluated with the existing pilot plant and demo plant in different advanced water treatment processes(AWTPs). In the future, studies on changes in oxidation and adsorption characteristics caused by competitive matters such as DOC and removal characteristics by other various AWTPs including ozone/filter adsorber need to be performed.

Cure characteristics, Mechanical Properties and Ozone Resistance of EPDM/SBR Blend Vulcanizates (EPDM/SBR 블렌드 가황체의 경화특성, 기계적 성질 및 내오존성)

  • Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.104-112
    • /
    • 2008
  • The ethylene propylene diene terpolymer (EPDM) blends with styrene butadiene rubber (SBR) were prepared from an open 2-roll mill following the conventional rubber blend method, and then cure characteristics, mechanical properties and ozone resistance were subsequently examined. With incorporation of SBR the torque value of the EPDM and SBR blends showed a gradual increase in the cure curve. The maximum torque value was obtained with lowest level at 25wt% of SBR and it was increased linearly with more than 25wt%. As the SBR loading increased scorch time and optimum cure time decreased. Hardness represented a maximum at 50wt% of SBR. However upper and lower than that value it decreased. It was found that the unfavorable characteristics of ozone resistance of pure SBR was significantly improved through the blending of SBR with EPDM.