• Title/Summary/Keyword: ozone exposure

Search Result 158, Processing Time 0.025 seconds

Effects of Ozone on $CO_2$ Assimilation and PSII Function in Two Tobacco Cultivars with Different Sensitivities

  • Yun, Myoung-Hui
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.89-98
    • /
    • 2006
  • Two tobacco cultivars (Nicotiana tabacum L.), Bel-B and Bel-W3, tolerant and sensitive to ozone, respectively, were grown in a greenhouse supplied with charcoal filtered air and exposed to 200 ppb ozone for 4 hr. Effects on chlorophyll fluorescence, net photosynthesis, and stomatal conductance are described. Quantum yield was calculated from chlorophyll fluorescence and the initial slope of the assimilation-light curve measured by the gas exchange method. Only the sensitive cultivar, Bel-W3, developed visual injury symptoms on up to 50% of the $5^{th}$ leaf. The maximum net photosynthetic rate of ozone-treated plants was reduced 40% compared to control plants immediately after ozone fumigation in the tolerant cultivar; however, photosynthesis recovered by 24 hr post fumigation and remained at the same level as control plants. On the other hand, ozone exposure reduced maximum net photosynthesis up to 50%, with no recovery, in the sensitive cultivar apparently causing permanent damage to the photosystem. Reductions in apparent quantum efficiency, calculated from the assimilation-light curve, differed between cultivars. Bel-B showed an immediate depression of 14% compared to controls, whereas, Bel-W3 showed a 27% decline. Electron transport rate (ETR), at saturating light intensity, decreased 58% and 80% immediately after ozone treatment in Bel-B and Bel-W3, respectively. Quantum yield decreased 28% and 36% in Bel-B and Bel-W3, respectively. It can be concluded that ozone caused a greater relative decrease in linear electron transport than maximum net photosynthesis, suggesting greater damage to PSII than the carbon reduction cycle.

Varietal Difference of Resistance to Ozone Injury in Rice Plant (벼 품종별 오존 피해 저항성 차이)

  • 손재근;이상철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.338-343
    • /
    • 1997
  • The response of seventy-five rice cultivars to ozone (O$_3$) were tested in the open-top chamber with ozone producing and monitoring system to determine the varietal difference of resistance to $O_3$ stress. Ozone was produced by electrostatic discharge in oxygen and was monitored by UV absorption ozone analyzer. Difference in response of rice to ozone was more clearly appeared on rice plants treated for 2 to 4 hours at 0.3 ppm concentration of $O_3$. Varietal resistance of rice to ozone was more distinctly classified at 21- to 35-day seedlings compared with 14-day rice plants. Most of indica and Tongil(indica$\times$japonica) type rice cultivars were more resistant than that of japonica cultivars based on the leaf injury to $O_3$. Eight Korean cultivars belong to japonica groups showed highly resistant reaction to $O_3$. Ozone exposure during booting stage caused lower grain fertility than exposures during seedling, maximum tillering and heading stages of rice.

  • PDF

Indicative Responses of Rice Plant to Atmospheric Ozone

  • Hur, Jae-Seoun;Kim, Pan-Gi;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.130-136
    • /
    • 2000
  • Differences in physiological and biochemical responses between sensitive and tolerant rice cultivars to ozone were investigated to develop reliable indications of early ozone damage. Three Korean local rice cultivars -sen-sitive cultivar Dongjin (DJ), moderately tolerant cultivar Hwayeong (HY) and tolerant cultivar Ilmee (IM) were exposed to ozone at the concentrations of 100 nl $\textrm{l}^{-1}$ or 200 nl $\textrm{l}^{-1}$ , 8 h per day for 10 days in a controlled-environment fumigation chamber. The rice cultivars seemed to be endurable to ozone stress at the concentration of 100 nl $\textrm{l}^{-1}$ which is frequently monitored during the growing season in summer. However, severe damage was induced and differential sensitivity was clearly noted among the rice cultivars at the higher ozone concentration. Activation of the glutathion (GR) -ascorbate peroxidase (APX) cycle was likely to be responsible for protection of rice plants against ozone exposure, relating difference in sensitivity of rice cultivars to ozone. Photosynthetic activity appeared to be one of sensitive responses, for which chlorophyll fluorescence and leaf greenness can together provide a very reliable index, a degree of photosynthetic damages by ozone. Formation of malondialdehyde (MDA) was also considered as an indication that can differentiate cultivars sensitivity to ozone. However, the changes in polyamines and total phenolics were not consistent with exposed ozone concentrations and/or ozone sensitivity of the cultivars. The behavior of polyamines and phenolics in the damaged plants at high ozone levels could be interpreted as an indication of ozone injury rather than activation of additional protection mechanisms scavenging active oxygen species formed by ozone. Several responses triggered by ozone could explain the differential sensitivity of the rice cultivars and be used as reliable indications of relative ozone damage to rice plant.

  • PDF

Fabrication of $In_2O_3$-based oxide semiconductor thick film ozene gas sensor ($In_2O_3$ 계 산화물 반도체형 후막 오존 가스센서의 제조)

  • 이규정
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.19-24
    • /
    • 1999
  • $In_2O_3$-based thick films for the ozone detection of ppb range have been investigated. The $In_2O_3$ sensing layer is quite sensitive to ozone, but the saturated stable sensitivity cannot be obtained at the ozone exposure of 100 ppb for 5 min. The addition of $Fe_2O_3$ into $In_2O_3$ indicates some improvement in response time and sensitivity, but it seems the improvement is not good enough for real applications. Firing of $In_2O_3$:$Fe_2O_3$ powder induces remarkable improvement in response and recovery, although the sensitivity decrease. The sensing layer fired at $1300^{\circ}C$ and operated $550^{\circ}C$ shows excellent properties of fast response time, saturated stable sensitivity and rapid recovery characteristics to 100 ppb ozone exposure for 5 min. Especially, it shows the reproducibility of the sensor signal for repeated measurements and the linearity between the ozone concentration and the sensor resistance. The preliminary results clearly demonstrated that the sensor can be successfully applied for the ozone detection of ppb range.

  • PDF

ULTRA-FINE PARTICLES AND GASEOUS VOLATILE ORGANIC COMPOUND EXPOSURES FROM THE REACTION OF OZONE AND CAR-AIR FRESHENER DURING METROPOLIS TRAVEL

  • Lamorena, Rheo B.;Park, Su-Mi;Bae, Gwi-Nam;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.72-80
    • /
    • 2007
  • Experiments were conducted to identify the emissions from the car air freshener and to identify the formation of ultra-fine particles and secondary gaseous compounds during the ozone-initiated oxidations with emitted VOCs. The identified primary constituents emitted from the car air freshener in this study were $\alpha$-pinene, $\beta$-pinene, $\rho$-cymene and limonene. Formation of ultra-fine particles (4.4-160 nm) was observed when ozone was injected into the chamber containing emitted monoterpenes from the air freshener. Particle number concentrations, particle mass concentrations, and surface concentrations were measured in time dependent experiments to describe the particle formation and growth within the chamber. The irritating secondary gaseous products formed during the ozone-initiated reactions include formaldehyde, acetaldehyde, acrolein, acetone, and propionaldehyde. Ozone concentration (50 and 100 ppb) and temperature (30 and $40^{\circ}C$) significantly affect the formation of particles and gaseous products during the ozone-initiated reactions. The results obtained in this study provided an insight on the potential exposure of particles and irritating secondary products formed during the ozone-initiated reaction to passengers in confined spaces.

Growth, Photosynthesis and Rubisco Activity of Resistant Hybrid Poplar(Populus trichocarpa×P. deltoides) to Ozone Exposure: A Link with Compensatory Strategy (오존에 노출(露出)시켰을 때 저항성(抵抗性)을 갖는 잡종(雜種)포플러의 생장(生長), 광합성(光合成) 그리고 Rubisco 활성(活性)에 관(關)한 연구(硏究): 수목(樹木)의 보상전략(補償戰略)과의 관계(關係))

  • Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.80-86
    • /
    • 1997
  • The objective of this study was to investigate how resistant poplar hybrid makes compensation to ozone stress. Growth, net assimilation rate and initial Rubisco activity were investigated. This study elucidates the physiological mechanisms associated with ozone sensitivity and resistance in 3 selected $F_2$ hybrids, a family originating from a cross between Populus trichocarpa${\times}$P. deltoides. Open-top chambers were used. Ozone concentrations varied from 90 to 115 ppb for 126 days, 6 to 9 hours in a day. This study tested the hypothesis that resistant poplar hybrid maintains the biomass production to ozone exposure via increased net assimilation rate and Rubisco activity. Growth, biomass, net assimilation rate and initial Rubisco activity were generally reduced by ozone treatment. In the tree parts, root under ozone stress was the most sensitive part. Reduced allocation of photosynthates to root growth might be due to increased respiratory demands for maintenance and repair of aboveground tissue damaged by ozone stress. Maintenance or increases remaining leaves in photosynthetic rates and Rubisco activity in resistant clone in response to ozone treatment were the results of biological compensation to ozone stress.

  • PDF

Comparing of Clonal Sensitivity of Populus deltoides to Atmospheric Ozone with Use of Visible Foliar Injury (잎의 가시적(可視的) 피해(被害)에 따른 오존에 대(對)한 미류나무(Populus deltoides) 클론간(間) 감수성(感受性) 비교(比較))

  • Lee, Jae-Cheon;Kim, In-Sik;Yeo, Jin-Kie;Koo, Yeong-Bon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.10-18
    • /
    • 2001
  • Experiments were conducted to compare ozone sensitivity among clones. Ten clones of Papulus deltoides Marsh. were exposured in walk-in type chambers to charcoal-filtered air, 50ppb, 100ppb, and 150ppb ozone for 8h $day^{-1}$ for 21 consecutive days. Occurrence of premature leaf-fall, and visible foliar injury expressed as adaxial stipple were measured after termination of ozone exposure for 3 weeks. Rate of premature leaf-fall increased progressively according to ozone exposure levels. As a result, rate of premature leaf-fall was estimated over 50% at 150ppb ozone. In the charcoal-filtered air and 50ppb ozone treatments, visible foliar injury was not found. But injury was estimated as LA; 17.3%, AA; 6.5%, and LAA; 1.6% to 100ppb ozone treatment and LA; 34.1%, AA; 17.5%, and LAA; 7.4% to 150ppb ozone treatment. Clonal differences of sensitivity within the species were manifested by significant clone differences of adaxial stipple(LAA) in 100ppb and 150ppb ozone treatments.

  • PDF

Physiological Responses of One-year-old Zelkova serrata Makino Seedlings to Ozone in Open-top Chamber (Open-top chamber 내(內)에서 오존에 폭로(暴露)시킨 1년생(年生) 느티나무(Zelkova serrata Makino) 묘목(苗木)의 생리적(生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Kim, Hyun Seok;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.424-431
    • /
    • 1995
  • This study was conducted to evaluate resistance and physiological responses of Zelkova serrata Makino seedlings to ozone in open-top chamber. One-year-old seedlings of Zelkova serrata were planted in pots in April and grown in greenhouse until August. The plants were transferred into two out-door open-top chambers with a dimension of 2.0 m in diameter and 2.0 m in height. First chamber served as a control and was supplied with ambient air. Ozone was added to the second chamber for 5 hours per day(10.00 AM-15.00 PM) for 23 consecutive days at 0.1 ppm. Each chamber housed 70 pots. Every two, three or five days after initiation of exposure, ten pots were randomly removed from the chamber and determined for the contents of chlorophyll a, b, total chlorophyll and ${\beta}$-carotene in the leaves. Photosynthesis and dark respiration were estimated by measuring $CO_2$ absorption in a gas exchange chamber and oxygen absorption by oxygen monitoring system, respectively. Superoxide dismutase(SOD) activity in the leaves was assayed by a xanthine oxidase method. First visible injury of translucent(water-soaked looking) spots appeared on the leaves 14 days after the initial exposure, and ozone accelerated senescence of old leaves. Contents of chlorophyll a and b decreased by 17%, and 31%, respectively, in ozone treatment two days after exposure. The decrease in chlorophyll b was greater than that of chlorophyll a. Content of ${\beta}$-carotene in ozone treatment decreased by 25% two days after initiation of exposure, but the reduction was recovered with time. Photosynthesis decreased by 45%, and the respiration increased by 28% in the ozone treatment. SOD activity started to increase 4 days after beginning of exposure and increased by 285% 7 days after exposure, and decreased to the level below the control treatment with the advancement of the visible injury.

  • PDF

Estimation and Variation of an Exposed Population of a Vulnerable Group to High Ozone Episodes (고농도 오존발생시 취약계층 노출 인구 현황 및 변화)

  • Kang, Jae-Eun;Bang, Jin-Hee;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.697-705
    • /
    • 2014
  • The exposed population of a vulnerable group to high ozone episodes (exceeding 60 ppb/8h) was estimated in Busan metropolitan city from 2000 to 2010. The frequency of high ozone days at monitoring sites and the number of the population aged over 65 were used to calculate the accumulated (total, seasonal, and yearly) number of the exposed older population (EOP) to high ozone episodes during the study period based on administrative areas, by interpolation and zonal mean methods in ArcGIS software. The older population in this city had increased significantly from 2000 to 2010 (representing over 10% of the total population in 2010). The vulnerable areas (e.g. the eastern area of the city) of the EOP to high ozone episodes were different from the areas with frequent high ozone episodes (e.g., the western area) due to the increase of the older population in particular areas. The difference was more significant in spring than in any other season, and in 2010 than in previous years (2000 and 2005).

Physiological and Biochemical Responses of Sedum kamtschaticum and Hosta longipes to Ozone Stress (기린초와 비비추의 오존에 대한 생리·생화학적 반응)

  • Cheng, Hyo Cheng;Woo, Su Young;Lee, Seong Han;Kwak, Myeong Ja;Kim, Kyeong Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the resistance to ozone and characteristics of ozone-induced damage were investigated on the perennial ground cover plant species. Sedum kamtschaticum and Hosta longipes were exposed to $200{\mu}g{\cdot}kg^{-1}$ ozone for 8 hours per day (from 08:00 to 16:00) in the naturally irradiated phytotron. The extent of ozone-induced damage was measured through the analysis of physiological parameters, such as water use efficiency (WUE), chlorophyll content (Chl. a, Chl. b, Chl. a + b, and Chl. a/b ratio), carotenoid contents, and the induction of reactive oxygen species (ROS). Ozone exposure significantly reduced the daytime WUE in both species. The contents of chlorophyll and carotenoid were also decreased and ROS, such as hydrogen peroxide ($H_2O_2$) and superoxide radical ($O_2{^-}$) were accumulated after ozone exposure. The above results of this study suggested that S. kamtschaticum is more resistant to atmospheric ozone than Hosta longipes. Considering its fast responses to ozone, it was also assumed that Hosta longipes can be used as an indicator plant of an increase in atmospheric ozone concentration.