• Title/Summary/Keyword: oxysterol-binding protein

Search Result 2, Processing Time 0.016 seconds

Characterization of Osh3, an Oxysterol-binding Protein, in Filamentous Growth of Saccharomyces cerevisiae and Candida albicans

  • Hur, Hyang-Sook;Ryu, Ji-Ho;Kim, Kwang-Hoon;Kim, Jin-Mi
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.523-529
    • /
    • 2006
  • OSH3 is one of the seven yeast homologues of the oxysterol binding proteins (OSBPs) which have the major binding affinity to the oxysterols and function as regulator of cholesterol biosynthesis in mammals. Mutational analysis of OSH3 showed that OSH3 plays a regulatory role in the yeast-to-hyphal transition through its oxysterol-binding domain in Saccharomyces cerevisiae. The OSH3 gene was also identified in the pathogenic yeast Candida albicans. Deletion of OSH3 caused a defect in the filamentous growth, which is the major cause of the C. albicans pathogencity. The filamentation defect of the mutation in the MAPK-associated transcription factor, namely $cph1{\Delta}$ was suppressed by overexpression of OSH3. These findings suggest the regulatory roles of OSH3 in the yeast filamentous growth and the functional conservations of OSH3 in S. cerevisiae and C. albicans.

Differentially Expressed Genes of Potentially Allelopathic Rice in Response against Barnyardgrass

  • Junaedi, Ahmad;Jung, Woo-Suk;Chung, Ill-Min;Kim, Kwang-Ho
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.231-236
    • /
    • 2007
  • Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by $GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein.

  • PDF