• 제목/요약/키워드: oxynitride phosphor

검색결과 7건 처리시간 0.033초

Synthesis of an oxynitride-based green phosphor $Ba_3Si_6O_{12}N_2:Eu^{2+}$ via an aqueous-solution process, using propylene-glycol-modified silane

  • Yasushita, Chihiro;Kato, Hideki;Kakihana, Masato
    • Journal of Information Display
    • /
    • 제13권3호
    • /
    • pp.107-111
    • /
    • 2012
  • An almost pure phase of $Ba_3Si_6O_{12}N_2$ doped with $Eu^{2+}$ was successfully synthesized through the ammonia nitridation of an oxide precursor prepared through an aqueous-solution method, using propylene- glycol-modified silane. The emission peak intensity of the obtained $Ba_3Si_6O_{12}N_2:Eu^{2+}$ was -2.2 times higher than that of the sample prepared through a solid-state reaction method.

LED용 Sr-Y-Si-계 산질화물 황색 형광체의 발광 특성 (Luminescence properties of novel Sr-Y-Si-Oxynitride yellow phosphor for LED applications)

  • 정옥근;박종천;류정호;조현
    • 한국결정성장학회지
    • /
    • 제23권4호
    • /
    • pp.195-200
    • /
    • 2013
  • 고상반응법으로 Ba-Y-Si-계 산질화물 황색 형광체를 합성하였고, 형광체의 발광특성에 미치는 고상반응온도, 환원 열처리 온도 및 $Eu^{2+}$ 활성제 농도의 영향에 대하여 조사하였다. 고상반응온도 $1400^{\circ}C$, 환원 열처리 온도 $1300^{\circ}C$가 최적화된 온도조건으로 조사되었다. 450 nm 파장의 여기 광원에 대하여 합성된 $Ba_9Y_{2+y}Si_6O_{24-3y}N_{3y}:Eu^{2+}$ 형광체는 571~585 nm 영역의 중심파장을 갖는 단일 발광밴드 특성을 나타내었다. 활성제 $Eu^{2+}$ 농도가 3 mol%일 때 가장 강한 발광강도가 얻어졌으며, 5 mol% 이상의 농도에서는 농도소광현상이 관찰되었다. FE-SEM 및 PSA 분석 결과 합성된 형광체는 약 $8.2{\mu}m$의 평균 입경을 갖는 것으로 확인되었다.

Effects of Oxygen and Alkaline Earth Atoms on Emission Wavelength of $Eu^{2+}$-doped Oxide Phosphor: A Computational Chemistry Study

  • Onuma, Hiroaki;Yamashita, Itaru;Serizawa, Kazumi;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.294-297
    • /
    • 2009
  • We computationally investigated the effects of oxygen and alkaline-earth on the emission wavelength of the $Eu^{2+}$-doped oxide phosphor. Using QSPR method, we found that the oxygen and alkaline-earth atom around the Eu atom increase and decrease the emission wavelength, respectively. We also investigated the $Eu^{2+}$-doped sulfide, nitride, and oxynitride phosphors.

  • PDF

백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용 (Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs)

  • 지순덕;최강식;최경재;김창해
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.

고연색 백색 광원용 BaSi2O2N2:Eu 형광체의 광학·구조 특성 분석 (Optical and Structural Analysis of BaSi2O2N2:Eu Green Phosphor for High-Color-Rendering Lighting)

  • 이성훈;강태욱;강현우;정용석;김종수;허훈
    • 한국재료학회지
    • /
    • 제29권7호
    • /
    • pp.437-442
    • /
    • 2019
  • Green $BaSi_2O_2N_2:0.02Eu^{2+}$ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of $Eu^{3+}$ into $Eu^{2+}$ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of $BaCO_3$ at $900^{\circ}C$ and phase transitions at $1,300^{\circ}C$ and $1,400^{\circ}C$. By structural analysis, it is confirmed that single phase [$BaSi_2O_2N_2$] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ion. An LED package (chip size $5.6{\times}3.0mm$) is fabricated with a mixture of our green $BaSi_2O_2N_2$, and yellow $Y_3Al_5O_{12}$ and red $Sr_2Si_5N_8$ phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.

Accurate electronic structures for Ce doped SiAlON using a semilocal exchange-correlation potential

  • 유동수;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.438-438
    • /
    • 2011
  • White light-emitting diodes (LEDs), the so-called next-generation solid-state lighting, offer benefits in terms of reliability, energy-saving, maintenance, safety, lead-free, and eco-friendly. Recently, rare-earth-doped oxynitride or nitride compounds have attracted a great deal of interest as a photoluminescent material because of their unique luminescent property, especially for white LEDs applications. Ce doped ${\beta}$-SiAlON has been studied as a wavelength conversion phosphor in white LEDs thanks to its high absorption rates, high quantum efficiency, and excellent thermal stability. Previously researches were not enough to understand the detail mechanism and characteristics of ${\beta}$-SiALON. The bandgap structures and electronic structures were not exact due to limitation of calculation methods. In this study, to elucidate the Ce doping effect on the SiAlON system, accurate band structures and electronic structure of the Ce doped ${\beta}$-SiAlON was intensively investigated using density functional theory calculations. In order to get a better description of the band gaps, MBJLDA method were used. We have found a single Ce atom site in ${\beta}$-SiAlON super cell. Furthermore, the density of state, band structure and lattice constant were intensively investigated.

  • PDF