• Title/Summary/Keyword: oxygen utilization rate

Search Result 67, Processing Time 0.028 seconds

Improved Poly-${\varepsilon}$-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation

  • Bankar, Sandip B.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.652-658
    • /
    • 2011
  • The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-${\varepsilon}$-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- ${\varepsilon}$-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-${\varepsilon}$-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates ($qO_2$) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

Applicability Study of Reactor Design in Sewage Treatment Plant using Specific Oxygen Uptake Rate (SOUR을 이용한 하수처리시설 포기조 설계 적용에 관한 연구)

  • Joo, Hyun Jong;Kim, Sung Chul;Lee, Kwang Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.140-147
    • /
    • 2010
  • In existing design method for aeration tank water temperature was considered as governing variable for applying safety factor. This study tried a few new approach of aeration tank design using SOUR at various temperature conditions. Specific substrate utilization rate (U) and specific oxygen uptake rate (SOUR) both were analyzed at various temperature and SRT. The laboratory scale reactor was operated on various temperature ($10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) and SRT (5day, 10day, 20day, 30day). In this study, SOUR tended to increase with the temperature increased. On the other hand, SOUR tended to decrease when SRT increased from 5 days to 30 days. Empirical equations were obtained SOUR=a/SRT+b and $SOUR=(a/m){\cdot}U+(b-a(n/m))$ from the relationship between SRT, U and SOUR. Empirical equations shows the possibility as a new design method for the aeration basin.

Enhancing the Oxygen Removal Rate for Its Application in Food Packaging Through the Impregnation of Porous Materials with the Non-metallic Oxygen Scavenger Sodium Metabisulfite (메타중아황산나트륨을 다공성물질에 함침하여 제조한 비금속류 산소제거제의 산소제거속도 향상 및 식품 포장 적용 연구)

  • Suyeon Jeong;Hyun-Gyu Lee;Seung Ran Yoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2024
  • The addition of oxygen scavengers to food products helps to reduce oxygen exposure, thereby mitigating deterioration, including changes in taste, odor, and color, as well as inhibiting microbial growth. Despite the advantages of the existing non-metallic oxygen removal materials in terms of safety for the human body and suitability for use in microwave ovens, their utilization has been limited due to their slow reaction initiation speed. Therefore, in the current study, sodium metabisulfite was impregnated into various porous media, including halloysite nanoclay, activated carbon, montmorillonite, and silica gel. The oxygen scavenger, produced by impregnating silica gel with sodium metabisulfite, demonstrated a 425% improvement in the initial oxygen removal rate compared to pure sodium metabisulfite. Additionally, sachets containing an oxygen-removing composition with an enhanced oxygen removal rate effectively decreased the oxygen concentration to less than 0.5% on the third day of storage in apple packaging, without elevating carbon dioxide levels. Moreover, it proved effective in preventing the browning of the apple surface. Therefore, the SM/SG oxygen-removal composition can be effectively applied to active food packaging by controlling the oxygen concentration within the packaging.

Evaluation of the COD Fractionation Capability Using Storage Microorganism from EBPR Process (EBPR 공정내 저장 미생물을 이용한 유입수 분율 분석능 평가)

  • Kim, Youn-Kwon;Seo, In-Seok;Kim, Hong-Suck;Kim, Ji-Yeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.25-31
    • /
    • 2004
  • In conventional activated sludge process, COD fractions in wastewater are important parameters, significantly. Depending on characteristics of influent COD fractionation, activated sludge process requires a major change of a process operation to ensure meeting a stricter standards. In order to validate and evaluate the accuracy of the traditional COD fractionation methodologies, readily and slowly biodegradable COD was mixed using glucose and peptone as a sole carbon source in a synthetic wastewater, respectively. In this research, prediction of the COD fraction was made using the OUR(Oxygen Utilization Rate) and the NUR(Nitrate Utilization Rate) experiments. The result showed that COD fractions calculated by OUR experiment were similar to the composition of synthetic wastewater. On the other hand, it was found that an error was generated during the NUR experiment. This error was due to the intracellular storage period for storage microorganisms such as PAOs, and the error in COD fraction was observed about 8-14 % in terms of Total COD.

  • PDF

Numerical Analysis in a 1 kWe SOFC Stack for Variation of the Channel Height in Separators (분리판의 채널 높이에 따른 1 kWe 급 고체산화물 연료전지 스택 수치 해석)

  • YIN, HAOYUAN;KIM, YOUNG JIN;YI, KUNWOO;KIM, HYEON JIN;YUN, KYONG SIK;YU, JI HAENG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.550-556
    • /
    • 2022
  • In this study, the flow uniformity was analyzed by performing numerical analysis on the 1 kWe internal manifold type solid oxide fuel cell stack according to the channel height of the separator. Also, it was examined by varying the fuel utilization rate and oxygen utilization rate. From the calculation results, we found that as the channel height of the separator decreased, the pressure drop increased exponentially. In addition, it was found that as the channel height of the separator decreased, the gas flow resistance inside the unit cell increased, and the flow resistance increased the pressure drop, thereby improving the flow uniformity inside the stack. Finally, the calculation results showed that as the fuel and oxygen utilization increased, the flow uniformity also improved.

Effects on Microbial Activity and Substrate Removal in Industrial Wastewater with Fluoride Content (산업폐수에서 불소함유가 미생물활성도 및 기질제거에 미치는 영향에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong;Jin, Oh Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.717-722
    • /
    • 2012
  • Fluoride can be easily found in semiconductor and display industry. However, there is a lack of research for its effects on the related wastewater treatment. The objective of this study is to evaluate the microbial inhibitory effect by fluoride injection. The research entailed the assessment of removal efficiency of $TCOD_{Cr}$ according to the fluoride concentration and also the Specific Oxygen Uptake Rate (SOUR) was measured. The laboratory scale reactor was prepared and operated with the fluoride concentrations of 0, 10, 50, 100, and 200 mg/L based on concentrations frequently occurring in the wastewater. The results from this study showed that, as the fluoride concentration increase, the Specific Substrate Utilization Rate (SSUR) tend to decrease as expected. Also, the increase in fluoride concentrations resulted in the decrease in SOUR. It is determined that fluoride injection affects the microbial activity. Especially, The addition of above 200 mg/L fluoride into reactor caused rapidly decreased SSUR and SOUR due to the inhibitory effects of fluoride.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

A Comparative Study on COD Fractionation Methods of Wastewater (하수의 COD 분류 시험 방법에 관한 비교 연구)

  • Kim, Sung-Hong;Yun, Jung-Won;Choi, Young-Gyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The influent COD of municipal wastewater has been divided into 4 fractions; readily soluble biodegradable, slowly particulate biodegradable, soluble and particulate unbiodegradable COD. The mathematical modeling of biological wastewater treatment processes and the design and operation of nutrient removal plants require a reliable and accurate estimate of the composition of influent wastewater COD. COD utilization rate is proportional to the oxygen uptake rate(OUR), so a batch biodegradation test with OUR measurement has been effectively used for the determination of COD fractionation. But the mathematical model of COD utilization and heterotrophs synthesis is essential to interpret the OUR measurement. Mamais method is another method for determining readily biodegradable soluble COD. Like the OUR test method, batch biodegradation test is necessary but it does not require mathematical model. These two methods for determining COD fractionation are introduced here in detail. Experimental results showed that COD composition by Mamais method is not different to that by OUR test method so, either of them can be used.

Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes

  • Kim, Seon-Guk;Park, Ok-Kyung;Lee, Joong Hee;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.247-250
    • /
    • 2013
  • In this study, we present a facile method of fabricating graphene oxide (GO) films on the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the negatively charged GO through an electrostatic LBL assembly process. Furthermore, we investigated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO $[rGO]/rAPGO)_{10}$ deposited PI film (rGO/rAPGO/PI) and pure PI film. The water vapor transmission rate of the GO and APGO-coated PI composite film was increased due to the intrinsically hydrophilic property of the charged composite films. However, the oxygen transmission rate was decreased from 220 to 78 $cm^3/m^2{\cdot}day{\cdot}atm$, due to the barrier effect of the graphene films on the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utilization in various applications.