• Title/Summary/Keyword: oxygen supplementation

Search Result 107, Processing Time 0.031 seconds

Effects of Exercise and Supplementation of L-Carnitine and Antioxidants on Mitochondrial Function in Rats

  • Kim, Sook-Bae;Kim, Sun-Ju
    • Journal of Community Nutrition
    • /
    • v.4 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • This study was investigated the effects of exercise and supplementation of L-carnitine and antioxidants on hepatic mitochondrial function, especially oxidative phosphorylation (OXPHOS). Isolated hepatic mitochondria from 4 rat groups were functionally tested by an analysis of respiration and the coupling of this process to ATP synthesis in the presence of ADP. Four groups were non-trained, non-supplemented group (NTNS), non-trained, supplemented group (NTS), long term-trained, non-supplemented group (LTNS) , and long term-trained, supplemented group (LTS). The trained rats run on a treadmill (grade 10°,20 m/min) for 60min/day for 8 weeks. The supplemented rats were treated with L-carnitine (0.5% diet), vitamin E(0.5mg/g BW), vitamin C (0.5mg/g BW) and melatonin (1 $\mu$ g/g BW) for 8 weeks. There were exercise effects on improving mitochondrial OXPHOS. Within non-supplemented groups, exercised rats resulted in a significant decrease in state 4 oxygen consumption, which increased the respiratory control (RC) ratio and ADP : O (P/O) ratio. There were supplementation effects on improving mitochondrial OXPHOS, too. Within non-exercised rats, supplemented rats resulted in a significant decrease in state 4 oxygon consumption. which increased the RC ratio and P/O ratio. There were additive effects of exercise and supplementation on OXPHOS. Within supplemented rats, exercise resulted in an increase in RC ratio. Significant effects of exercise-supplement interaction on improving OXPHOS were identified. It suggests that exercise and supplementation of L-carnitine and antioxidants might improve more efficiently the impaired OXPHOS efficiency in mitochondrial dysfunction that recognized as is an important cause of degenerative diseases. (J Community Nutrition 4(3) : 187∼194, 2002)

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

Storage of Bull and Boar Semen: Novel Concepts Derived Using Magnetized Water and Antioxidants

  • Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Artificial insemination technique has been contributed immensely for production of livestock worldwide as a critical assisted reproductive technique to preserve and propagate excellent genes in domestic animal industry. In the past decade, methods for semen preservation have been improved mostly in liquid preservation method for boar semen and freezing method for bull semen. Among many factors affecting semen quality during preservation, reactive oxygen species, produced by aerobic respiration in sperm for survival and motility, are unfavorable to sperm physiology. In mammalian cell as well as in the sperm, antioxidant system plays a role in degradation of reactive oxygen species. Magnetized water forms smaller stabilizing water clusters, resulting in high absorption and permeability of the cell for water, implicating its application for semen preservation. Therefore, this review focuses on preservation methods of boar and bull semen with respect to improvement of extender and reduction of reactive oxygen species by using magnetized water and supplementation of antioxidants.

The Changes of Arterial Oxygen Saturation During Sleep in Chronic Obstructive Pulmonary Disease Patients (만성 폐쇄성 폐질환 환자에서 수면중 동맥혈 산소 포화도의 변화)

  • Jeong, Ki-Ho;Choi, Hyung-Seok;Hyun, In-Gyu;Choi, Dong-Chull;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keon-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.3
    • /
    • pp.255-261
    • /
    • 1991
  • Frequently patients with chronic obstructive pulmonary disease have lowered arterial oxygen saturation in daytime. During sleep, they are apt to experience additional hypoxemia. These episode of nocturnal hypoxemia are usually associated with periods of relative hypoventilation. Noctunal hypoxemia may be associated with cardiac arrhythmia and with acute increase in pulmonary arterial pressure and may be implicated in the development of chronic pulmonary hypertension and cor pulmonale. We selected 14 patients with chronic obstructive pulmonary disease, 9 with emphysema dominant type and 5 with chronic bronchitis dominant type, to examine the frequency and severity of nocturnal hypoxemia and the effect of oxygen in prevention of nocturnal hypoxemia. The results were as follows; 1) On PFT, FVC, $FEV_1$, and $FEV_1$/FVC showed no significant difference between the emphysema dominant type (pink puffers, PP) and the chronic bronchitis dominant type (blue bloaters, BB). But DLCO/VA for the PP group was $45.7{\pm}15.1%$ which was significantly different from BB group, $82.4{\pm}5.6%$. 2) The daytime arterial oxygen saturation ($SaO_2$) and the lowest $SaO_2$, during sleep for the BB group were significantly lower than for the PP group. 3) The hypoxemic episodes during sleep were more frequent in BB group and the duration of hypoxemic episode was longer in BB group. 4) In both group studied, although there was a tendency for a lower L-$SaO_2$ (the lowest $SaO_2$, during sleep), an increase in hypoxemic episodes and duration as the daytime $SaO_2$, fell lower, the only parameter which showed significant correlation was daytime $SaO_2$, and the frequency of hypoxemic episodes in the PP group (r=-0.68, P<0.05). 5) In PP group, with oxygen supplementation, L-$SaO_2$, during sleep showed significant increase, and there was a tendency for the frequency of hypoxemic episodes and duration to fall but it was not significant. 6) In BB group, oxygen supplementation significantly increased the L-$SaO_2$ during sleep and also significantly decreased the frequency and duration of hypoxemic episode. From these results, we can see that oxygen supplementation during sleep can prevent the decrease in $SaO_2$ to some extent and that this effect of oxygen can be seen more prominently in the BB group.

  • PDF

Arginine addition in a diet for weaning pigs can improve the growth performance under heat stress

  • Yun, Won;Song, Minho;Lee, Jihwan;Oh, Hanjin;An, Jiseon;Kim, Gokmi;Lee, Sungdae;Lee, Suhyup;Kim, Hyeun Bum;Cho, Jinho
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.460-467
    • /
    • 2020
  • The effects of arginine (Arg) and methionine (Met) supplementation on nutrient use in pigs were determined under hot season conditions. A total of five experimental diets including basal diet (CON) were supplemented with two types of amino acids (Arg and Met) and two different amounts of amino acids (0.2% and 0.4%). Under hot season condition, pigs fed with additional Arg were significantly higher in average daily gain (ADG) than the CON group and the ADG increased linearly (p < 0.05) with increasing Arg supplementation. But there was no significant difference with Met supplementation (p > 0.05). The apparent ileal digestibility (AID) of amino acids had no significant difference among treatments (p > 0.05), while d-reactive oxygen metabolites (d-ROMs) concentration in treatments with Arg supplementation, were significantly higher (p < 0.05) than other treatments. In conclusion, exposure of pigs to heat stress does not affect the AID of amino acid, whereas pig fed with additional Arg improved ADG and feed efficiency under heat stress condition.

The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients

  • Han, Jeong-Hwa;Lee, Hye-Jin;Kim, Tae-Seok;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. SUBJECTS/METHODS: 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. RESULTS: Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. CONCLUSIONS: These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

Effects of glutathione s-transferase (GST) M1 and T1 polymorphisms on antioxidant vitamins and oxidative stress-related parameters in Korean subclinical hypertensive subjects after kale juice (Brassica oleracea acephala) supplementation

  • Lee, Hye-Jin;Han, Jeong-Hwa;Park, Yoo Kyoung;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Glutathione s-transferase (GST) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. SUBJECTS/METHODS: Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. RESULTS: After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of ${\beta}-carotene$, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. CONCLUSIONS: The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.

Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells

  • Suh, Nayoung;Lee, Eun-bi
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.572-577
    • /
    • 2017
  • In most clinical applications, human mesenchymal stem cells (hMSCs) are expanded in large scale before their administration. Prolonged culture in vitro results in cellular senescence-associated phenotypes, including accumulation of reactive oxygen species (ROS) and decreased cell viabilities. Profiling of stem cell-related genes during in vitro expansion revealed that numerous canonical pathways were significantly changed. To determine the effect of selenocysteine (Sec), a rare amino acid found in several antioxidant enzymes, on the replicative senescence in hMSCs, we treated senescent hMSCs with Sec. Supplementation of Sec in the culture medium in late-passage hMSCs reduced ROS levels and improved the survival of hMSCs. In addition, a subset of key antioxidant genes and Sec-containing selenoproteins showed increased mRNA levels after Sec treatment. Furthermore, ROS metabolism and inflammation pathways were predicted to be downregulated. Taken together, our results suggest that Sec has antioxidant effects on the replicative senescence of hMSCs.

Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death

  • Moon, Ji Eun;Heo, Wan;Lee, Sang Hoon;Lee, Suk Hee;Lee, Hong Gu;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.

Effect of Korean Traditional Tea Materials Water Extract on Hepatic Oxygen Free Radical Generating and Scavenging Enzyme Activities in Lead Administered Rats (한국전통차 재료의 열수추출물이 납투여 흰주의 간조직 중 유해 활성산소 생성과 제거효소 활성에 미치는 영향)

  • 김덕진;조수열;신경희;이미경;김명주
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • This study was designed to test the effect of Korean traditional tea materials on oxygen-free radical metabolism in lead (Pb) -administered rats. Male rats were divided into normal, Pb-control (Pb-Con) and Pb-water extract of green tea (Camellia sinensis; GT) , persimmon leaf (Diospyros kaki; PL) , safflower seed (Carhamus tinctorius: SS) , Du-Zhong (Eucommia ulmoides; EU) groups, respectively. Pb intoxication was induced by administration of lead acetate (25 mg/kg. B.W., oral) weekly. The extract was administered based on 1.26 g of raw material/kg B.W./day for 4 weeks. When the GT, PL, SS and EU were supplemented to the Pb-administered rats, hepatic lipid peroxide levels were significantly lower compared to the Pb-Con group. Hepatic cytochrom P-450 content and aminopyrine N-demethylase activity was lower in the Pb-Con group than in the normal group, whereas xanthine oxidase activity was significantly elevated in Pb-administered rats. The water extract of GT, PL, SS and EU supplementation attenuated changes in enzyme activities generating reactive oxygen species in the liver. Hepatic superoxide dismutase, catalase and glucose 6-phosphate dehydrogenase activities were significantly higher in the Pb-Con group than in the normal group, while monoamine oxidase activity also tended to increase in the Pb-administered rats. However, glutathione peroxidase and glutathione S-transferase activities, and glutathione content significantly decreased through Pb intoxication. The supplementation of GT, PL, SS and EU induced alleviation changes of hepatic antioxidant enzyme activity.