• Title/Summary/Keyword: oxygen stress

Search Result 1,517, Processing Time 0.036 seconds

Physiological Responses of Oxygen-Tolerant Anaerobic Bifidobacterium longum under Oxygen

  • Ahn, Jun-Bae;Hwang, Han-Joon;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.443-451
    • /
    • 2001
  • In order to investigate what kind of response anaerobic bifidobacteria has on oxygen stress, five oxygen-tolerant bifidobacteria were isolated from human fecal samples. All were temporarily identified as Bifidobacterium longum through an analysis of carbohydrate utilization patterns and cellular fatty acid profiles. In the presence of oxygen, the lag phase became extended and the cell growth was suppressed. Bifidobacterial cell was able to remove dissolved oxygen in an early stage of growth and to overcome oxygen stress to a certain extent. The cell became long n size and showed a rough surface containing many nodes which were derived from abnormal or incomplete cell division. Cellular fatty acid profiled changed remarkably under a partially aerobic condition, so that the carbon chain of cellular fatty acid became short. All the dimethyl acetals originated from plasmalogen were reduced, any cyclopropane fatty acid, 9, 10-methyleneoctadecanoic acid ($C_{19:0}cyc9,10$), was increased remarkably. Oxygen stress induced a 5.5 kD protein in B. longum JI 1 of the oxygen-teolerant bifidobacteria, that was named Osp protein, and its N-terminal amino acid sequence was as follows: unknown amino acid-Thr-Gly-Val-Arg-Phe-Ser-Asp-Asp-Glu. Therefore, the oxygen-tolerant bifidobacteria seemed to defend against oxygen stress byincreasing the content of short fatty acid and cyclopropane fatty acid, and induction of an oxygen stress protein, but not the plasmalogen.

  • PDF

The Research on the Oxidative Stress by Free Oxygen Radicals in Sasang Constitution (활성산소(活性酸素)에 의한 산화스트레스환자의 사상체질별(四象體質別) 특성(特性)에 관한 연구(硏究))

  • Han, Kyoung-Su;Ahn, Taek-Won;Bae, Na-Young
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.3
    • /
    • pp.155-165
    • /
    • 2006
  • 1. Objectives The purpose of this research is to find out the Constitutional difference of Oxidative stress by Free oxygen radicals. 2. Methods We enrolled 55 patients who visited our hospital for medical examination from February 1, 2006 to May 31, 2006. This research investigated the Constitutional difference of Oxidative stress by Free oxygen radicals. 3. Results and Conclusions l) The Sasang Constitutional distribution of patients have oxidatative stress by Free oxygen radicals was Taeunmin 30%(8persons of total 27persons), Soeumin 56%(9persons of total 16persons), Soyangin 33%(4persons of total 12persons). The rate of patients have oxidatate stress was high in Soeumin. The Sasang Constitution had significance relation with oxidatative stress by Free oxygen radicals. 2) Triglyceride on the average of Taeumin patients have oxidatative stress by Free oxygen radicals is ststistical significantly higher than Triglyceride on the average of controlled normal persons in Taeumin(p-value=0.010) and Soyangin(p-value=0.015). Blood uric acid level on the average of patients have oxidatate stress by Free oxygen radicals is ststistical significantly lower than Blood uric acid level on the average of controlled normal persons in Taeumin(p-value=0.004) and Soyangin(p-value=0.037). This research has shown that there is a statistical significance between the Triglyceride level, Blood uric acid level and oxidatate stress by Free oxygen radicals.

  • PDF

Oxidative stress on anaerobes

  • Takeuchi, Toru;Shi, Minyi;Kato, Naoki;Watanabe, Kunitomo;Morimoto, Kanehisa
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.142-145
    • /
    • 2002
  • A strict anaerobe, Prevotella melaninogenica is highly sensitive to oxidative stress. Oxidative stress such as exposure to oxygen or addition of hydrogen peroxide, increased 8-hydroxydeoxyguanosine (80HdG), a typical of oxidative DNA damage, and decreased the bacterial cell survival rate. We could detect the generation of reactive oxygen species in P. melaninogenica after exposure to oxygen. UVA irradiation also increased 80HdG in the bacterium. On the other hand, such oxidative stress did not increase 80HdG in a facultative anaerobe. These findings suggest that P. melaninogenica is a suitable material to study the biological effects of oxidative stress, to evaluate antioxidants, and to study the effects of oxygen or reactive oxygen species on molecular evolution.

  • PDF

Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Kobayashi, Makio
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.322-330
    • /
    • 2003
  • The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films (입방정 질화붕소 박막의 잔류응력 형성에 미치는 산소 첨가 효과)

  • Jang, Hee-Yeon;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon;Lim, Dae-Soon;Jeong, Jeung-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • In this study we investigated the oxygen effect on the nucleation and its residual stress during unbalanced magnetron sputtering. Up to 0.5% in oxygen flow rate, cubic phase (c-BN) was dominated with extremely small fraction of Hexagonal phase (h-BN) of increasing trend with oxygen concentration, whereas hexagonal phase is dominated beyond 0.75% flow rate. Interestingly, the residual stress in cubic-phase-dominated films was substantially reduced with small amount of oxygen (${\sim}0.5%$) down to a low value comparable to the h-BN case. This may be because oxygen atoms break B-N $sp^3$ bonds and make B-O bonds more favorably, increasing $sp^2$ bonds preference, as revealed by FTIR and NEXAFS. It was confirmed by experimental facts that the threshold bias voltage for nucleation and growth of cubic phase were increased from -55 V to -70 V and from -50 V to -60 V respectively. The reduction of residual stress in O-added c-BN films is seemingly resulting from the microstructure of the films. The oxygen tends to increase slightly the amount of h-BN phase in the grain boundary of c-BN and the soft h-BN phase of 3D network including surrounding nano grains of cubic phase may relax the residual stress of cubic phase.

Effect of Vibration Stress on the Oxygen Consumption, Ammonia Excretion and Blood Characteristics of the Cultured Eel, Anguilla japonica (뱀장어, Anguilla japonica의 산소소비, 암모니아 배설 및 혈액성상에 미치는 진동의 영향)

  • 이정열;허준욱
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.262-267
    • /
    • 2004
  • Physiological responses (oxygen consumption, ammonia excretion, hemoglobin, red blood cell and white blood cell) of cultured eel, Anguilla japonica to vibration stress were studied in an indoor experimental system. Vibration of 76-93 dB (V) from an electric vibrator was provided in 15-minute intervals during daytime (0800-1800) over a ten day period. Oxygen consumption before the beginning of the experiment (0 day) was 83.9 mg $O_2$$.$kg$^{-1}$ ㆍhr$^{-1}$ . After 1, 5 and 10 days of stress respiration rate decreased by 37.5, 53.7 and 70.5%, respectively. Ammonia excretion showed a similar pattern to that of oxygen consumption. Ammonia excretion decreased by 80.1 % following 10 days of vibration stress. Blood hemoglobin concentration also decreased at 1, 3 and 10th day were 29.4% on day 1,83.9% on day 3 and 87.9% by day 10, while red blood cell counts at day 1 and day 10th were 59.8% and 84.7% lower than initial counts, respectively. The white blood cell count increased by 191.2% at day 7, dropping to 41.5% at day 10. Physiological activity was reduced by 50% following 3.4 days of vibration stress.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder (구형 산소용기 내 표면균열에 대한 수치파괴역학 평가)

  • Cho, Doo-Ho;Kim, Jong-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Han, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.

Hyperbaric oxygenation applied before or after mild or hard stress: effects on the redox state in the muscle tissue

  • Claudia Carolina Perez-Castro;Alexandre Kormanovski;Gustavo Guevara-Balcazar;Maria del Carmen Castillo-Hernandez;Jose Ruben Garcia-Sanchez;Ivonne Maria Olivares-Corichi;Pedro Lopez-Sanchez;Ivan Rubio-Gayosso
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • The mechanism is unclear for the reported protective effect of hyperbaric oxygen preconditioning against oxidative stress in tissues, and the distinct effects of hyperbaric oxygen applied after stress. The trained mice were divided into three groups: the control, hyperbaric oxygenation preconditioning, and hyperbaric oxygenation applied after mild (fasting) or hard (prolonged exercise) stress. After preconditioning, we observed a decrease in basal levels of nitric oxide, tetrahydrobiopterin, and catalase despite the drastic increase in inducible and endothelial nitric oxide synthases. Moreover, the basal levels of glutathione, related enzymes, and nitrosative stress only increased in the preconditioning group. The control and preconditioning groups showed a similar mild stress response of the endothelial and neuronal nitric oxide synthases. At the same time, the activity of all nitric oxide synthase, glutathione (GSH) in muscle, declined in the experimental groups but increased in control during hard stress. The results suggested that hyperbaric oxygen preconditioning provoked uncoupling of nitric oxide synthases and the elevated levels of GSH in muscle during this study, while hyperbaric oxygen applied after stress showed a lower level of GSH but higher recovery post-exercise levels in the majority of antioxidant enzymes. We discuss the possible mechanisms of the redox response and the role of the nitric oxide in this process.

Effect of Oxygen Concentration, Physical Trauma on Proliferation of Umbilical Cord Blood-derived Mesenchymal Stem Cells (산소 농도의 변화와 물리적 손상이 제대혈 중간엽 줄기세포의 증식에 미치는 영향)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.803-807
    • /
    • 2011
  • Human umbilical Mesenchymal Stem Cell(uMSC) has been known as one of major component to regenerate connective tissues such as bone, cartilage, fat and others. The effect of low(5%), normotensive(20%) oxygen and freezing-thawing damage on proliferation of uMSC were investigated. low oxygen concentration culture of uMSC resulted in enhanced proliferation significantly($p$ <0.05) than 20% of oxygen culture. After the freezing-thawing injury to uMSC, 5% oxygen culture showed marked proliferation of uMSC than that of 20% oxygen($p$ <0.05) in the 5th passage of uMSC. Expression of antioxidant enzymes such as superoxide anion 1 and glutathione peroxidase 1 appeared marked in 20% oxygen cultured uMSC, which suggest oxidative stress could induce less proliferation of uMSC. Above findings would suggest proliferation of uMSC in 5% of oxygen will give more yields.