• Title/Summary/Keyword: oxygen rich combustion

Search Result 45, Processing Time 0.027 seconds

Numerical Study of the Cooling Channel of the Preburner for a Small Liquid Rocket Engine (소형 액체로켓엔진용 예연소기 냉각채널 유동해석)

  • Moon, In-Sang;Shin, Kang-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.21-24
    • /
    • 2010
  • The cooling channel of the preburner for staged combustion engines was studied. The combustion pressure of the researched preburner is about 210 bar which is very high compared with the engines of the Korean Launch Vechicle and 30 ton class liquid rocket engines developed as a pre-research program. Also, the combustion is an oxygen rich process unlike the gas generators of open cycle kerosene engines. Thus the cooling process is very important to make the preburner stable. Many configurations for the preburner were developed and numerically analyzed. As a result, the pressure loss could be reached below the target.

  • PDF

A Study of $NO_x$ Reduction in Stage Combustion (단계적 연소의 $NO_x$ 저감에 대한 연구)

  • 채재우;전영남;이운영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1556-1571
    • /
    • 1993
  • Nitrogen oxides ($NO_x$) are air pollutants which are generated from the combustion of fossil fuels. Stage combustion is an effective method to reduce $NO_x$ emissions. The effects of $NO_x$ reduction by stage combustion in a pilot scale combustor(6.6kW) have been investigated using propane gas flames laden with NH$_{3}$ as Fuel-N. The results in this study are follows; (1) $NO_x$ emissions are dependent on the reducing environment of fuel-rich zone regardless of total air ratio. The maximum $NO_x$ reduction is at the stoichiometric ratio of 0.8 to 0.9 in the reducing zone. (2) $NO_x$ reduction is maximum when burnout air is injected at the point where the oxygen in reducing zone is almost consumed. (3) $NO_x$ reduction is dependent upon the temperature of reducing zone with best effect above 950.deg. C in the reducing zone. (4) The fuel stage combustion is more effective to reduce $NO_x$ formation in the wide range of stoichiometric ratio than two stage combustion. (5) The results of this study could be utilized mainly in a design strategy for low $NO_x$ emission from the combustion of high fuel-nitrogen in energy sources ratio than as an indication of the absolute levels of $NO_x$ which can be achieved by stage combustion techniques in large scale facilities.

Experimental study on oxygen free torrefaction process to produce high quality biomass fuel (고열량 바이오매스 연료 생산을 위한 무산소 반탄화 방법에 대한 실험적 연구)

  • Lee, Changyeop;Kim, Sewon;Shin, Myungchul;Kwon, Minjun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.205-206
    • /
    • 2012
  • A novel torrefaction process is suggested to improve energy efficiency and to produce high quality biomass fuel. Major developments for novel torrefaction process are as follows. To maximize the energy efficiency in heat transfer, flue gas is directly used for heat source in the torrefier. To accomplish the oxygen free environment in the torrefaction reactor, a burner is developed and it can be runned with fuel rich state. To use the calorific gases produced from torrefier, another burner is developed to combust them. In the test, the novel torrefaction process leads low energy consumption and the quality of torrefied fuel becomes better.

  • PDF

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Spray Characteristics of Gas-centered Swirl Coaxial(GCSC) Injector in High Pressure Condition (고압환경에서의 기체-액체 분사기 분무 특성 연구)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Bae, Tae-Won;Choi, Hwan-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.5-8
    • /
    • 2010
  • The GCSC injectors studied in this paper are those applied to the combustion chamber of staged combustion engines. Liquid fuel is injected through tangential holes along the outer wall of the GCSC injector forming a swirling sheet and oxygen rich gas generated by a preburner enters axially through the center orifice of the injector to form a gaseous jet. The spray characteristics of GCSC injectors under ambient/high pressure conditions and the effect of recess on spray characteristics have been examined in this paper. These results are expected to be used as fundamental data to develop of a staged combustion engine.

  • PDF

Review on Kerosene Fuel and Coking (케로신 연료 및 코킹에 대한 검토)

  • Lee, Junseo;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.81-124
    • /
    • 2020
  • In liquid oxygen/kerosene liquid rocket engines, kerosene is not only a propellant but also plays a role as a coolant to protect the combustion chamber wall from 3,000 K or more combustion gas. Since kerosene is exposed to high temperature passing through cooling channels, it may undergo heat-related chemical reactions leading to precipitation of carbon-rich solids. Such kerosene's thermal and fluidic characteristic test data are essential for the regeneratively cooled combustion chamber design. In this paper, we investigated foreign studies related to regenerative cooling channel and kerosene. Starting with general information on hydrocarbon fuels including kerosene, we attempted to systematically organize sedimentary phenomena on cooling channel walls, their causes/research results, coking test equipments/prevention methods, etc.

Combustion Characteristics for Co-firing of Biomass (Walnut Shell) (바이오매스(호두껍질) 혼소에 대한 연소 특성에 관한 연구)

  • Kim, Jin-Ho;Lee, Byoung-Hwa;Sh, Lkhagvadorj;Kim, Sang-In;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • Combustion characteristics for co-firing of biomass (Walnut Shell) as blending fuel in coal fired boiler have investigated using thermogravimetric analyser (TGA) and drop tube reactor (DTR). The results show that devolatilization and char combustion for WS occurs at lower temperature than those of existing coals and has lower activation energy value, which is resulting in higher reactivity. When the WS is blended with coal, TGA results show linear profiles depending on blending ratio for each fuel. However, DTR results exist the non-additive phenomena for blending of WS. As blending ratio of WS increase, the UBC decrease at BBR 5%, but the UBC rather increase from BBR 10% due to oxygen deficiency formed from rapid combustion of WS. This paper propose that fuel lean condition by oxygen rich lead to higher blending ratio of biomass by solving the oxygen deficiency condition.

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

Study on Low Temperature Pyrolysis of Woody Biomass to Produce High-Calorie Torrefied Fuel (고열량 반탄화 연료 생산을 위한 목질계 바이오매스 저온열분해 방법에 대한 연구)

  • Lee, Changyeop;Kwon, Minjun;Kim, Daehae;Kim, Sewon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.263-263
    • /
    • 2014
  • Low temperature pyrolysis of woody biomass has been conducted to produce highcalorie torrefied fuel. In this experiment, to maximize the energy efficiency in heat transfer, flue gas is directly used for heat source in the torrefier. To accomplish the oxygen free environment in the torrefaction reactor, a burner has been developed and it can be runned with fuel rich state. An inner central axis rotating type of reactor was applied in experiment. To use the calorific gases produced from torrefier, another burner is developed to combust them.

  • PDF

Optimization of 150kW Cogeneration Hybrid System (150kW급 열병합발전 하이브리드 시스템 최적화 연구)

  • Choi, Jae-Joon;Kim, Hyuk-Joo;Jung, Dae-Heon;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.340-344
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system using Lean burn engine is up to be optimized because of the large amount of the extra-fuel at the after-burner system. The after-burner system at different concept was applied. The reduction time for the activation temperature of the DeNOx catalyst was achieved by making a hole between the combustor and boiler. Because of the lowered fuel consumption, the lowered temperature level was optimized by blocking the hole of the boiler The optimized cogeneration hybrid system consumes $76Nm^3/h$ LNG to produce 150kW electricity compared to before optimization $103Nm^3/h$ LNG. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10 ppm NOx, 50ppm CO, 25ppm HC. The cogeneration hybrid system can meet the current NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF