• Title/Summary/Keyword: oxygen reduction reaction

Search Result 345, Processing Time 0.025 seconds

Effect of $SO_2$ on DeNOx by Ammonia in Simultaneous Removal of SOx and NOx over Activated Coke (활성 코우크스상의 동시 탈황탈질에서 암모니아에 의한 탈질에 이산화황이 미치는 영향)

  • Kim, Hark-Joon;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • The $SO_2$ and $NO_x$ removal with an activated coke catalyst was conducted by a two-stage reaction which first $SO_2$ was oxidized to $H_2SO_4$ and then $NO_x$ was reduced to $N_2$. But if unreacted sulfur dioxide entered in the second stage, the $NO_x$ reduction was hindered by the reaction with ammonia. In this study, experimental investigations by using lab-scale column apparatus on the product and the reactivity of $SO_2$ with ammonia over coke catalyst which was activated with sulfuric acid was carried out through ultimate analysis DTA, TGA and SEM of catalyst before and after the reaction. Also, the effect of reaction emperature on the reactivity of $SO_2$ with ammonia was determined by means of breakthrough curves with time. The obtained results from this study were summarized as following; Activated cokes were decreased carbon component and increased oxygen and sulfur components in comparison with original cokes. The products over coke catalyst were faced fine crystal of $(NH_4)_2SO_4$, which results in the pressure loss of reacting system. The order of general reactivity in terms of the reaction temperature after breakthrough for $SO_2$ was found to be $150^{\circ}C$ > $200^{\circ}C$ > $100^{\circ}C$. This was related to adsorption amounts of ammonia on the activated cokes.

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

Electrochemical Behaviors of the Surface-Treated Nickel Hydroxide Powder and Electrolyte Additive LiGH for Ni-MH Batteries (니켈수소전지용 수산화니켈 입자의 표면처리와 전해액 첨가제 LiOH의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2008
  • Single particle of nickel hydroxide and the surface-treated one with cobalt element were performed to review the effect of LiOH additive in alkaline electrolyte for Ni-MH batteries using microelectrode test system. As a result of cyclic voltammetry, the electrochemical behaviors such as the oxidation/reduction and oxygen evolution reaction are clearly observed for a single particle of nickel hydroxide, respectively. Furthermore, the reduction current peak of nickel hydroxide added with LiOH in electrolyte was very low and broad compared with the normal nickel hydroxide without an additive LiOH, which had a bad effect to the crystallization structure of nickel hydroxide. However, it was found that capacity and cycle properties of the nickel hydroxide treated with cobalt greatly increased by the addition of LiOH.

Reactivity and Preparation of Perovskite-Type Mixed Oxides LaBO3(B = Mn, Fe, Co) by Citrate Sol-Gel Method (Citrate Sol-Gel법에 의한 Perovskite형 복합 산화물 LaBO3(B = Mn, Fe, Co)의 생성 및 환원 반응성)

  • Hwang, Ho Sun;Park, Il Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.276-282
    • /
    • 1994
  • Perovskite-type mixed oxides LaBO$_3$(B = Mn, Fe, Co) were prepared by citrate sol-gel method in $air(850^{\circ}C$, 24h). The oxygen stoichiometries and structures of these oxides were determined by XRD and TPR results as followings; LaMnO$_{3.16}$(a = 5.507, c = 13.329 $\AA$, hexagonal), LaFeO$_{3.17}$(a = 5.554, b = 5.555, c = 7.863 $\AA$, orthorhomibic), LaCoO$_{3.0}$(a = 5.436, c = 13.095 $\AA$, hexagonal). The temperature programmed reduction(TPR) experiments in static 300 torr H$_2$ atmosphere shows that the reduction reaction of LaBO$_3$(B = Mn, Fe, Co) proceeds into two stages, and thermal stabilities of these oxides decreased in the order of LaMnO$_3$ > LaFeO$_3$ > LaCoO$_3$. According to the kinetic analysis the lowest activation energy was obtained for LaCoO$_3$.

  • PDF

A Study on the Effect of the Composting of the Food Garbage by the Variations of Agitation cycle (교반속도 변화가 음식쓰레기의 퇴비화에 미치는 영향에 관한 연구)

  • Hu, Kwan;Shin, Dae-Yewn;Jeong, Byeong-Keon;Park, Chi-Hong
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.118-125
    • /
    • 1998
  • This study investigates the react characteristics to suggest the condition of the utilization and disintegration of food garbage as composting by varying the supply amount of air of the fermentation reactors. With the initial temperature and agitation velocity maintained 50$\circ$C and 1 rpm, the supply amount of air gives variety to 0.5, 1, 2, 4 l/kg$\cdot$ min. In the case of the amount of air operated at the 0.5 l/kg$\cdot$ min, reaction temperature shows a rising to the maximum 66$\circ$C after the 48hr, and the oxygen used rate of the micro-organisms shows the largest level at 18.4% after the 8hr. In the case of $NH_3, H_2, H_2S$ and SO$_2$ among the react gas, the sanitary utilization shows the possibility of the microorganisms gas disintegration, with most high gas generate rate. In the case of the amount of air operated at the 1, 2 and 4 l/kg$\cdot$ min, initial react was advanced rapidly and the product of the 72 hr after shows big weight reduction. As the experimentation result, when the amount of air operated at the 1 l/kg$\cdot$ min over, the reduction by disintegration would be more effectively, for the reactor maintains the color tone and shape of the straw (bulking agent).

  • PDF

Corrosion Behavior of Inconel X-750 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.355-362
    • /
    • 2020
  • The corrosion behavior of the Inconel X-750 alloy was investigated for its potential application under a Cl2-O2 mixed gas flow in an Ar atmosphere. The corrosion rate was found to be negligible at temperatures up to 400℃ under a flow rate of 30 mL·min-1 Cl2 + 170 mL·min-1 Ar, whereas an exponential increase was observed in the corrosion rate at temperatures greater than 500℃. The suppression of the corrosion reaction due to the presence of O2 was verified experimentally at flow rates of 30 mL·min-1 Cl2 (4.96 g·m-2·h-1), 20 mL·min-1 Cl2 + 10 mL·min-1 O2 (2.02 g·m-2 ·h-1), and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 (1.34 g·m-2·h-1) under a constant Ar flow rate of 170 mL·min-1 at 600℃ for 8 h. The surface morphology analysis results revealed that porous surfaces with tunnel-type holes were produced under the Cl2-O2 mixed-gas condition. Furthermore, the effects of the Cl2 flow rate on the corrosion rate were investigated, indicating that its impact was negligible within the range of 5-30 mL·min-1 Cl2 at 600℃.

Numerical Study on Ignition Delay Time of CH4 as CO/H2 Addition in MILD Combustion (MILD 연소 환경에서 CO/H2 첨가에 따른 CH4의 점화 지연 시간의 해석적 연구)

  • Kim, Donghee;Huh, Kang Y.;Lee, Youngjae
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • MILD(Moderate or Intense Low-oxygen Dilution) combustion has attracted attention as the clean thermal energy technology due to the lower emissions of unburnt carbon and NOx. MILD combustion aims to enlarge the combustion reaction zone using the spontaneous ignition phenomenon of the reactants. In this study, the ignition delay time of CH4 according to the initial temperature of reactants and the addition of CO, H2 was investigated using a numerical approach. Ignition delay time became shorter as the increases of initial temperature and H2 addition. But, CO addition to the fuel increase the ignition delay time. In case of H2 addition to the fuel, the ignition delay time decreased because the higher fraction of HO2 promotes the decomposition of methyl radical(CH3) and produce OH radical. However, in case of CO addition to the fuel, ignition delay time inceased because a high proportion of HCO consumes H radical. There was no significant effect of HCO on the reduction of ignition delay time. Also, the increase rates of NO emissions by the addition of CO and H2 were approximately 7% and 1%, respectively. A high proportion of NCO affects the increase in NO production rate.

Protective Effect of Tongyuhwalhyeol-tang on Liver Injury in Thioacetamide-induced Rat (Thioacetamide 유발 간손상모델에서 통규활혈탕의 간보호효과)

  • Kim, Kyeong Jo;Shin, Mi-Rae;Kim, Soo Hyun;Kim, Su Ji;Lee, Ah Reum;Kwon, Ojun;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Objectives : Liver disease is an inflammatory reaction caused by oxidative stress, viral, alcohol, and drug properties. Inflammatory reaction causes hepatitis and chronic hepatitis is persistent, it progresses to liver fibrogenesis and liver cancer. The aim of this study was to confirm the hepatoprotective effect of Tongyuhwalhyeol-tang(Tongqiaohuoxue Decoction) (TH) and Gamtongyuhawlhyeol-tang(GTH) in TAA-induced liver injury animal model. Methods : The antioxidant activities were evaluated through in vitro experiments, such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays, total polyphenol and total flavonoid content measurement. To confirm the liver protective effect, induced by Thioacetamide (TAA) for 3 days injection at 200 mg/kg rats. TH and GTH were treated 3 days at 200 mg/kg/day. The changes of reactive oxygen species (ROS), peroxynitrite ($ONOO^-$), alanine aminotransferanse (ALT) and aspartate aminotransferase (AST) in serum were analyzed after experiment. Also, expression of anti-inflammation, anti-oxidant related proteins were investigated by western blot analysis. Results : TH was inhibited the antioxidant activities. In the TAA-induced rat, TH decreased ROS, $ONOO^-$, ALT, AST level in serum. Inflammation related protein expressions increased in TAA-induced rat compared to normal rat. However, TH group inhibited the down expression of these proteins. Also, anti-oxidant related protein expressions increased in TH group compared TAA-induced rat. Conclusion : Therefor, these results suggested that TH provided hepatoprotective effects on the hepatic injury leading to the reduction of inflammatory response. In addition, the effect of TH was superior to that of GTH.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.