• Title/Summary/Keyword: oxygen reduction reaction

Search Result 345, Processing Time 0.029 seconds

Mechanistic Studies on the Hydrogen Evolution and Permeation of Ultra-Strong Automotive Steel in Neutral Chloride Environments (중성의 염화물 환경 내 자동차용 초고강도강의 부식반응에 기인한 수소원자의 발생 및 투과 메커니즘)

  • Hwang, Eun Hye;Ryu, Seung Min;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.428-434
    • /
    • 2018
  • Hydrogen evolution on a steel surface and subsequent hydrogen diffusion into the steel matrix are evaluated using an electrochemical permeation test with no applied cathodic current on the hydrogen charging side. In particular, cyclic operation in the permeation test is also conducted to clarify the corrosion-induced hydrogen evolution behavior. In contrast to the conventional perception that the cathodic reduction reaction on the steel in neutral aqueous environments is an oxygen reduction reaction, this study demonstrates that atomic hydrogen may be generated on the steel surface by the corrosion reaction, even in a neutral environment. Although a much lower permeation current density and significant slower diffusion kinetics of hydrogen are observed compared to the results measured in acidic environments, they contribute to the increase in the embrittlement index. This study suggests that the research on hydrogen embrittlement in ultra-strong steels should be approached from the viewpoint of corrosion reactions on the steel surface and subsequent hydrogen evolution/diffusion behavior.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Ultrathin Carbon Shell-Coated Intermetallic Alloy Nanoparticles for Oxygen Reduction Reaction in Fuel Cells (초박형 카본쉘이 코팅된 금속간 화합물 합금 나노 입자로 구성된 연료전지용 산소 환원 반응 촉매)

  • Hyeonwoo Choi;Keonwoo Ko;Yoonseong Choi;Jiho Min;Yunjin Kim;Sourabh Sunil Chougule;Khikmatulla Davletbaev;Chavan Abhishek Arjun;Beomjun Pak;Namgee Jung
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.208-214
    • /
    • 2024
  • To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 ℃ is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.

A Chemical Reaction Calculation and a Semi-Empirical Model for the Dynamic Simulation of an Electrolytic Reduction of Spent Oxide Fuels (산화물 사용후핵연료 전해환원 화학 반응 계산 및 동적 모사를 위한 반실험 모델)

  • Park, Byung-Heung;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.19-32
    • /
    • 2010
  • Electrolytic reduction technology is essential for the purpose of adopting pyroprocessing into spent oxide fuel as an alternative option in a back-end fuel cycle. Spent fuel consists of various metal oxides, and each metal oxide releases an oxygen element depending on its chemical characteristic during the electrolytic reduction process. In the present work, an electrolytic reduction behavior was estimated for voloxidized spent fuel based on the assumption that each metal-oxygen system is independent and behaves as an ideal solid solution. The electrolytic reduction was considered as a combination of a Li recovery and chemical reactions between the metal oxides such as uranium oxide and the produced Li metal. The calculated result revealed that most of the metal oxides were reduced by the process. It was evaluated that a reduced fraction of lanthanide oxides increased with a decreasing $Li_2O$ concentration. However, most of the lanthanides were expected to be stable in their oxide forms. In addition, a semi-empirical model for describing $U_3O_8$ electrolytic reduction behavior was proposed by considering Li diffusion and a chemical reaction between $U_3O_8$ and Li. Experimental data was used to determine model parameters and, then, the model was applied to calculate the reduction yield with time and to estimate the required time for a 99.9% reduction.

Packed Bed Methane Chemical-Looping Reforming System Modeling for the Application to the Hydrogen Production (수소 생성을 위한 고정상 메탄 매체 순환 개질 시스템 모델링)

  • HA, JONGJU;SONG, SOONHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.453-458
    • /
    • 2017
  • A study on the modeling of the methane Chemical Looping Reforming system was carried out. It is aimed to predict the temperature and concentration behavior of the product through modeling of oxygen carrier fixed bed reactors composed of multiple stacks. In order to design the reaction system, first of all, the flow rate of the hydrogen to be produced was calculated. The flow rate ratio of the oxidation/reduction reactor was calculated considering the heat of reaction between adjacent reactors. Finally, in this paper, kinetic model including empirical coefficients was suggested.

Synthesis of Ultrafine TiC-15%Co Powder by Thermochemical Method (열화학적 방법에 의한 초미립 TiC-15%Co 분말의 합성)

  • 홍성현;탁영우;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.281-287
    • /
    • 2003
  • Ultrafine TiC-15%Co powders were synthesized by a thermochemical process, including spray drying, calcination, and carbothermal reaction. Ti-Co oxide powders were prepared by spray drying of aqueous solution of titanium chloride and $Ti(OH)_2$ slurry, both containing cobalt nitrate, fellowed by calcination. The oxide powders were mixed with carbon powder to reduce and carburize at 1100~125$0^{\circ}C$ under argon or hydrogen atmosphere. Ultrafine TiC particles were formed by carbothermal reaction at 1200~125$0^{\circ}C$, which is significantly lower than the formation temperature (~1$700^{\circ}C$) of TiC particles prepared by conventional method. The oxygen content of TiC-15%Co powder synthesized under hydrogen atmosphere was lower than that synthesized under argon, suggesting that hydrogen accelerates the reduction rate of Ti-Co oxides. The size of TiC-15%Co powder was evaluated by FE-SEM and TEM and Identified to be smaller than 300 nm.

Study on the Reduction of Molten EAF Slag (용융 전기로 슬래그의 환원반응에 관한 연구)

  • Joo, Seong-Woong;Shin, Jong-Dae;Shin, Dong-Kyung;Hong, Seong-Hun;Ki, Jun-Sung;Hwang, Jin-Il;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.753-761
    • /
    • 2012
  • The reduction behavior of low level oxides such as (T.Fe), (MnO) and ($P_2O_5$) in molten EAF slag was investigated using commercial reductants. In an air atmosphere, the slag volume increased and the reduction rate of the slag was very low due to the oxidation loss of reductants by oxygen in the air. The reduction rate of the slag was also low when a commercial reductant was used alone in an Ar gas atmosphere. The reason is probably because the material transfer through the interface between the slag and reductant is difficult due to the formation of high melting point oxide. When reductants were mixed with burnt lime in order to form low melting point reaction products, the reduction rate of the slag increased up to the range of 45-70%. By using the mixtures of reductants and burnt lime so as to form a low melting point slag at the reaction end, the reduction rate of the slag was improved up to 60-85%.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Reset-first Resistance Switching Mechanism of HfO2 Films Based on Redox Reaction with Oxygen Drift-Diffusion

  • Kim, Jong-Gi;Lee, Sung-Hoon;Lee, Kyu-Min;Na, Hee-Do;Kim, Young-Jae;Ko, Dae-Hong;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.286-287
    • /
    • 2012
  • Reset-first resistive switching mechanism based on reduction reaction in HfO2-x with oxygen drift-diffusion was studied. we first report that the indirect evidence of local filamentary conductive path formation in bulk HfO2 film with local TiOx region at Ti top electrode formed during forming process and presence of anion-migration at interface between electrode and HfO2 during resistive switching through high resolution transmission electron microscopy (HRTEM), electron disperse x-ray (EDX), and electron energy loss spectroscopy (EELS) mapping. Based on forming process mechanism, we expected that redox reaction from Ti/HfO2 to TiOx/HfO2-x was responsible for an increase of initial current with increasing the post-annealing process. First-reset resistive switching in above $350^{\circ}C$ annealed Ti/HfO2 film was exhibited and the redox phenomenon from Ti/HfO2 to TiOx/HfO2-x was observed with high angle annular dark field (HAADF) - scanning transmission electron microscopy (STEM), EDX and x-ray photoelectron spectroscopy. Therefore, we demonstrated that the migration of oxygen ions at interface region under external electrical bias contributed to bipolar resistive switching behavior.

  • PDF

Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts (MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구)

  • Park, Sun Joo;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.624-628
    • /
    • 2008
  • Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.