• 제목/요약/키워드: oxygen reduction

검색결과 1,409건 처리시간 0.024초

고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발 (Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

고체산화물 연료전지용 (La,Sr)$MnO_3$-YSZ 복합체 양극의 산소환원 반응기구 및 전극 특성 (Part I: 산소환원 반응기구) (Oxygen Reduction Mechanism and Electrode Properties of (La,Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part I: Oxygen Reduction Mechanism))

  • 김재동;김구대;이기태
    • 한국세라믹학회지
    • /
    • 제38권1호
    • /
    • pp.84-92
    • /
    • 2001
  • (La,Sr)MnO$_3$(LSM)-YSZ 복합체 양극의 산소환원 반응기구에 대해 고찰하였다. YSZ를 첨가함에 따라 복합체 양극의 ohmic 저항이 증가하고, 분극 저항은 YSZ를 40 wt%~50 wt% 혼합하였을 때 최소값을 나타내었다. 또한 LSM-YSZ 복합체 양극의 산소환원 반응기구는 1가 산소이온의 표면확산과 산소이온전달반응에 의해서 지배됨을 알 수 있었다. 임피던스 분석 결과에 따르면 고주파수 영역에서 나타나는 반원은 산소이온전달반응으로 산소분압 의존성이 거의 없고, YSZ가 40 wt% 첨가되었을 때 최소값을 나타내었다. 중간주파수 영역에서 나타나는 반원은 1가 산소이온의 표면확산반응으로 산소분압 의존성은 약 1/4이고, YSZ가 40~50 wt% 첨가되었을 때 최소값을 나타냈다. 한편, 저주파수 영역에 나타나는 반원은 가스확산반응으로 산소분압 의존성이 1이고, 온도에 따른 의존성이 거의 없었다.

  • PDF

이산화탄소 저감을 위한 SMV의 순산소 연소 시뮬레이션 (SIMULATION ON PURE OXYGEN COMBUSTION OF SMV FOR $CO_2$ REDUCTION)

  • 김호연;손화승;김철민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.275-277
    • /
    • 2011
  • KOGAS(Korea Gas Corporation) uses two-type vaporizers to send customers natural gas with imported LNG. In winter season, SMVs(SubMerged combustion Vaporizers) are mainly operated due to low seawater temperature. SMVs consume the natural gas of 1,520 $Nm^3/hr$ and emit a lot of $CO_2$ in winter time. If carbon taxes are activated on climate change, the tax burden will be severely heavy. Accordingly this work carried out numerical simulation with a commercail CFX code to investigate its possibility on the practical use of pure oxygen combustion of SMVs to reduce $CO_2$ and to improve its efficiency. First, a nozzle of a SMV's combustor is modelled. The combustion characteristics of Air/Fuel and Oxygen/Fuel are analyzed under folly insulated condition. Although we couldn't find the carbon reduction and the efficient elevation when the pure oxygen/fuel type was compared to the existing air/fuel one, we need a further study to investigate the effect of $CO_2$ recirculation.

  • PDF

Oxygen reduction reaction and electrochemical properties of transition metal doped (Pr,Ba)Co2O5+𝛿

  • Kanghee Jo;Heesoo Lee
    • 한국결정성장학회지
    • /
    • 제33권1호
    • /
    • pp.37-44
    • /
    • 2023
  • Transition metal (Me = Cu, Fe, Ni) doped (Pr, Ba)Co2O5+𝛿 (PBCO) material were investigated in terms of electronic structure change and electrochemical properties. It was confirmed that (Pr, Ba)(Co, Cu)O5+𝛿 (PBCCu) and (Pr, Ba)(Co, Fe)O5+𝛿 (PBCFe) showed cubic and orthorhombic structures, respectively, but (Pr, Ba)(Co, Ni)O5+𝛿 (PBCNi) showed secondary phases. PBCCu has an average particle diameter of 1093 nm, and PBCO and PBCFe have an average particle diameter of 495.1 nm and 728 nm, respectively. The average oxidation values of B site ions in PBCMe were calculated to be 3.26 (PBCO), 2.48 (PBCCu), 3.32 (PBCFe), and valence band maximum (VBM) was -0.42 eV (PBCO), -0.58 eV (PBCCu), -0.11 eV (PBCFe). It is expected that PBCCu easily interacts with adsorbed oxygen due to the lowest oxidation value and the highest VBM. The polarization resistance was 0.91 Ω cm2 (PBCO), 0.77 Ω cm2 (PBCCu), 1.06 Ω cm2 (PBCFe) at 600℃, showing the lowest polarization resistance of PBCCu.

Gigantomastia as a Cause of Pulmonary Hypertension

  • Castillo, Juan Pablo;Robledo, Ana Maria;Torres-Canchala, Laura;Roa-Saldarriaga, Lady
    • Archives of Plastic Surgery
    • /
    • 제49권3호
    • /
    • pp.369-372
    • /
    • 2022
  • Reduction mammaplasty is the gold standard treatment for gigantomastia. We report one female patient with juvenile gigantomastia associated with severe pulmonary hypertension where her pulmonary pressure decreased significantly after the surgery, improving her quality of life. A 22-year-old female patient with gigantomastia since 10 years old, tricuspid regurgitation, and pulmonary thromboembolism antecedent was admitted to the emergency department. Her oxygen saturation was 89%. Acute heart failure management was initiated. An echocardiogram reported left ventricle ejection fraction (LVEF) of 70% with severe right heart dilation, contractile dysfunction, and arterial pulmonary pressure (PASP) of 110 mm Hg. A multidisciplinary team considered gigantomastia could generate a restrictive pattern, so a Thorek reduction mammoplasty with Wise pattern was performed. Presurgical measurements were: sternal notch to nipple-areola complex, right 59 cm, left 56 cm. Three days after surgery, the patient could breathe without oxygen support. In the outpatient follow-up, patient referred reduction of her respiratory symptoms and marked improvement in her quality of life. Six months after surgery, a control echocardiogram showed a LVEF of 62% and PASP of 85 mm Hg. Pulmonary hypertension may be present in patients with gigantomastia. Reduction mammoplasty may be a feasible alternative to improve the cardiac signs and symptoms in patients with medical refractory management.

Role of Calcium in Reperfusion Damage of Ischemic Myocardium; Influence on Oxygen Radical Production

  • Park, Jong-Wan;Kim, Myung-Suk;Park, Chan-Woong
    • Toxicological Research
    • /
    • 제4권1호
    • /
    • pp.23-35
    • /
    • 1988
  • The role of calcium in the production of oxygen radical which causes reperfusion damage of ischemic heart has been examined. The reperfusion damage was indrced in isolated Langendorff perfused rat hearts by aortic clamping for 60 min followed by reperfusion with oxygenated Krebs-Henseleit solution with or without 1.25 mM $CaCl_2.$ On reperfusion of the ischemic hearts with the calcium containing solution, the release of cytosolic enzymes (LDH and CPK) increased abruptly. These increased release of enzymes were significantly inhibited by additions of oxygen radical scavengers (SOD, 5,000 U; catalase, 12,500 U) into the reperfusion solution. In the hearts isolated from rats pretreated with allopurinol(20 mg/kg orally, 24 hr and 2 hr prior to the experiments), the levels of enzymes being released during reperfusion were significantly lower than that of the control. However, in the hearts perfused with the calcium-free but oxygenated solution, the increase in the release of cytosolic enzymes during reperfusion was neither inhibited by oxygen radical scavengers nor by allopurinol pretreatment. For providing the evidence of oxygen radical generation during the reperfusion of ischemic hearts in situ, the SOD-inhibitable reduction of exogenously administered ferricytochrome C was measured. In the hearts perfused with the calcium containing solution, the SOD-inhibitable ferricytochrome C reduction increased within the first minute of reperfusion, and was almost completely inhibited by allopurinol pretreatment. When the heart was perfused with the calcium free solution, however, the reduction of ferricytochrome C was not only less than that in the calcium containing condition, but also was not so completely inhibited by allopurinol pretreatment. By ischemia, xanthine oxidase (XOD) in the ventricular tissue was changed qualitatively, but not quantitatively. In the heart made ischemic with the calcium containing condition, the oxygen radical producing O-form of XOD increased, while the D- and D/O-form decreased. However, in the ischemic heart reperfused with the calcium free condition, the D/O-form of XOD was elevated without significant increase in O-form of the enzyme. It is suggested from these results that the calclum may play a contributing role in the genesis of reperfusion damage by promoting the conversion of xanthine oxidase from the D/O-form to the oxygen radical producing O-form in the ischemic myocardium.

  • PDF

연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계 (Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor)

  • 김범근;모하메드아케트키룰;권성현;조대철
    • 한국환경생태학회지
    • /
    • 제33권5호
    • /
    • pp.596-604
    • /
    • 2019
  • 본 연구는 퇴적물이 소모하는 산소량(SOD)과 환경 인자가 서로 미치는 영향을 파악하기 위해 퇴적물 배양실험을 수행하였다. 이를 위해 실험실에서 용출 반응조를 설치하여 20일간 배양하였으며, 퇴적물에 존재하는 물질 중 P 및 Fe와의 관계를 중점적으로 연구하였다. 분석 결과, 수층의 용존 산소는 시간의 경과에 따라 감소하는 경향을 나타냈으며, 퇴적물의 산화환원전위 또한 음의 방향으로 진행되어 혐기적 환원환경이 조성되었다. 퇴적물 산소요구량(SOD)은 배양 초기 0.05mg/g로 측정되었으며, 20일차 0.09mg/g으로 퇴적물이 소모하는 산소량이 증가하는 경향을 관찰하였다. 이는 chl-a의 증가로 퇴적물 표층에 축적된 유기물의 분해에 의한 산소 소모(Biological-SOD), 그리고 환원반응에 의해 생성된 금속 환원물이 재산화 할 경우 소모되는 산소(Chemical-SOD)에 의한 것으로 보인다. 퇴적물에서 추출한 존재형태별 인과 SOD의 상관관계를 살펴보면 Ex-P, Org-P의 경우 양의 상관관계, Fe-P의 경우 음의 상관관계를 나타내었다. 또한, 실험 20일차 퇴적물의 미생물 군집을 분석한 결과 혐기성 철 환원균(FeRB)이 우점종으로 검출되었다. 따라서, 철 산화물과 결합한 인산염이 환원반응에 의해 분리될 경우 인산염은 수중으로 용출되어 일차생산력을 증가시키며, 환원물은 재산화 하여 퇴적물 산소 소모량에 기여하므로 본 연구는 산소 수지의 개선을 위한 기초 자료로 이용될 것으로 기대된다.

비예혼합 대향류 및 동축 제트화염에서 산소부화에 따른 NOx 생성특성 (NOx Formation Characteristics with Oxygen Enrichment in Nonpremixed Counterflow and Coflow Jet Flames)

  • 유병훈;황철홍;한지웅;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.169-174
    • /
    • 2004
  • The NOx emission characteristics with oxygen enrichment in nonpremixed counterflow and coflow jet flame of $CH_4$ fuel have been investigated numerically. A small amount of nitrogen is included in oxygen-enriched combustion, in order to consider the inevitable $N_2$ contamination by air infiltration. The results show that the initial increase of NO with increasing oxygen enrichment is due to increasing temperature and residence time, while its subsequent decrease above 75% oxygen is due to decreasing the consumption rate of nitrogen. When oxygen addition exceeds 30%, Thermal NO gradually becomes the dominant production pathway and Prompt NO becomes negative pathway for net NO production rate. It is also seen that Thermal NO plays an important role in NO reduction when strain rate increase in oxygen-enriched combustion. Finally, the results of EINOx with oxygen enrichment in coflow jet flame show the similar profile with those of conterflow flame. It is confirmed that, with leakage of 1% nitrogen in the oxidizer stream, the corresponding EINOx is eight times of that emitted from regular $CH_4$/Air flame.

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

칼슘 증기에 의한 Ti-48Al-2Cr-2Nb 분말의 산소 저감 및 표면 화학적 상태 분석 (Evaluation of Oxygen Reduction and Surface Chemical State of Ti-48Al-2Cr-2Nb Powder by Ca Vapor)

  • 김태헌;권한중;임재원
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.31-37
    • /
    • 2021
  • This study explores reducing the oxygen content of a commercial Ti-48Al-2Cr-2Nb powder to less than 400 ppm by deoxidation in the solid state (DOSS) using Ca vapor, and investigates the effect of Ca vapor on the surface chemical state. As the deoxidation temperature increases, the oxygen concentration of the Ti-48Al-2Cr-2Nb powder decreases, achieving a low value of 745 ppm at 1100℃. When the deoxidation time is increased to 2 h, the oxygen concentration decreases to 320ppm at 1100℃, and the oxygen reduction rate is approximately 78% compared to that of the raw material. The deoxidized Ti-48Al-2Cr-2nb powder maintains a spherical shape, but the surface shape changes slightly owing to the reaction of Ca and Al. The oxidation state of Ti and Al on the surface of the Ti-48Al-2Cr-2Nb powder corresponds to a mixture of TiO2 and Al2O3. As a result, the peaks of metallic Ti and Ti suboxide intensify as TiO2 and Al2O3 in the surface oxide layer are reduced by Ca vapor deposition.