• Title/Summary/Keyword: oxygen inhibition

Search Result 711, Processing Time 0.03 seconds

Effects Of Active Okygen Species (^1O_2, O_2^-, H_2O_2$) and Scavengers on the Chlorophyll Bleaching of Leaf-Burning Disease from Panax ginseng C.A. Meyer (인삼엽요병에서 Active Oxygen Species (^1O_2, O_2^-, H_2O_2$)가 Chlorophyll Bleaching에 미치는 영향 및 방제대책에 관한 연구)

  • Yang, Deok-Cho;Kim, Myoung-Won;Chae, Quae;Kim, Myeong-Sik
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.98-104
    • /
    • 1989
  • In order to determine the specific active oxygen species directly related to chlorophyll bleaching in the leaf-burning disease, we investigated the effects of singlet oxygen (1O2), superoxide radical (O2-), and hydrogen Peroxide (H2O2) on isolated chloroplast suspension and leaf discs from Panax ginseng C.A. Meyer. When the singlet oxygen was added to the chloroplast suspension, the chlorophyll and carotenoid contents were decreased by more than 809), similar to treatment with high light intensity (100 KLux). We assumed that the conversion of dioxygen (O2) produced either in photolysis or in breakdown of hydrogen peroxide to singlet oxygen resulted from photorespiration. On the basis of these experiments , :he inhibitory effects of active oxygen scavengers propylgallic acid (PGA), 2,5-ditetrabutyl hydroquinon (DBH), sodium pyrosulfate (SPS), and ascorbic acid (ABS) were examined. In chloroplast suspension all four scavengers inhibited chlorophyll bleaching by more than 75fl , and in the leaf discs the inhibition rates of SPS, PGA and ABS were 46%, 51%, and 96% respectively.

  • PDF

Estimation of Nitrite Concentration in the Biological Nitritation Process Using Enzymatic Inhibition Kinetics

  • GIL, KYUNG-IK;EUI-SO CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.377-381
    • /
    • 2002
  • Recently, interests to remove nitrogen in the nitritation process have increased because of its economical advantages, since it could be a short-cut process to save both oxygen for nitrification and carbon for denitrification compared to a typical nitrification. However, the kinetics related with the nitritation process has not yet been fully understood. Furthermore, many useful models which have been successfully used for wastewater treatment processes cannot be used to estimate effluent nitrite concentration for evaluating performance of the nitritation process, since the process rate equations and population of microorganisms for nitrogen removal in these models have been set up only for the condition of full nitrification. Therefore, the present study was conducted to estimate an effluent nitrite concentration in the nitritation process with a concept of enzymatic inhibition kinetics based on long-term laboratory experiments. Using a nonlinear least squares regression method, kinetic parameters were accurately determined. By setting up a process rate equation along with a mass balance equation of the nitrite-oxidizing step, an effluent nitrite concentration in the nitritation process was then successfully estimated.

Effects of the Grapevine Shoot Extract on Free Radical Scavenging Activity and Inhibition of Pro-inflammatory mediator Production in RAW264.7 Macrophages (포도나무가지 추출물의 프리라디칼 소거 작용 및 염증 발현 매개인자 생성 억제 효과)

  • 허선경;이상국;김선숙;허연회;안수미
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.188-193
    • /
    • 2001
  • Free radical scavengers or quenching agents for reactive oxygen species (ROS) present in consumable fruits, vegetables, and beverages have received considerable attention as potential antioxidants, and thus uses for treatment of several human diseases. In this study, grapevine shoot extract (GSE) containing high concentration of resveratrol and viniferine was evaluated for antioxidant potential and inhibition of pro-inflam-matory mediator production. Utilizing 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and xanthine oxidase (XOD) inhibition assay the GSE showed inhibitory effects of DPPH radical scavenging and XOD activity with the $IC_{50}$/ values of 34.5 and 155 $\mu\textrm{g}$/ml, respectively. In addition, GSE also exhibited the inhibition of prostaglandin E$_2$ (PGE$_2$) and nitric oxide (NO) production in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells with the $IC_{50}$/ value of 6.4 and 14.5 $\mu\textrm{g}$/ml, respectively. This result suggests that grapevine shoot extract has the potential activity as a natural antioxidant or antiinflammatory agent.

  • PDF

Lipoxygenases, Hyaluronidase, and Xanthine Oxidase Inhibitory Effects Extracted from Five Hydrocotyle Species

  • Moon, Seok Hyeon;Lim, Yong;Huh, Man Kyu
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.277-282
    • /
    • 2021
  • Hydrocotyle is a genus of prostrate, perennial aquatic or semi-aquatic plants formerly classified in the family Apiaceae, now in the family Araliaceae. Lipoxygenases (LOX) are present in the human body and play an important role in the stimulation of inflammatory reactions. Ethanolic extracts of five Hydrocotyle species (H. ramiflora, H. maritima, H. nepalensis, H. sibthorpioides, and H. yabei) showed inhibition of 23.5~50.6% at 2.0 mg/mL. Their extracts showed LOX inhibition in half maximal effective concentration (EC50) range 15.1~15.7 ㎍/mL. Hyaluronic acid is a glycosaminoglycan, a major component of the extracellular matrix Five extracts of these species inhibited less than 23.0% of Hyaluronidase (HAase) activity at a concentration of 2.0 mg/mL Xanthine oxidase (XO) is a form of xanthine oxidoreductase, a type of enzyme that generates reactive oxygen species. Five Hydrocotyle species were found to have inhibitory activity of XO at 2.0 mg/ml, with 65% having greater than 50% inhibition. H. ramiflora exhibited the highest activity with an inhibition of 80.0%. The results suggested that Lipoxygenases, Hyaluronidase, and Busan 47340, Republic of Korea from five Hydrocotyle species might be multifunctional and prevent the degradation of allergic reactions and inflammation.

Evaluation of Inhibition Efficiency of Thymus Extract as a Corrosion Inhibitor of Aluminum Alloy 5083 in an Ethylene Glycol/NaCl Corrosive Medium

  • H. Hachelef;R. Mehdaoui;K. Hachama;M. Amara;A. Khelifa;A. Benmoussat;M. Hadj Meliani;Rami K. Suleiman
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.314-321
    • /
    • 2023
  • The aim of the present study was to investigate the effect of thymus extract on corrosion inhibition of aluminum 5083 alloy in a 0.1 M NaCl medium prepared using a mixture of ethylene glycol and water using potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic electrochemical technique showed an increase in corrosion inhibition efficiency starting from 49.63% at a concentration of 0.25 g/L to 92.71% at a maximum concentration of 1.25 g/L of the extract. These results were consistent with those obtained via EIS analysis. Spectral characterization of the tested plant extract using the Fourier-transform infrared spectroscopy (FTIR) technique confirmed the presence of organic compounds having different oxygen and aromatic functionalities in the extract that could help enhance the adsorption of these compounds on the aluminum surface. This study reveals possible adsorption isotherm of the thymus extract on the aluminum surface, supporting a Langmuir isotherm for the adsorption of inhibitor molecules on this surface.

THE EFFECT OF OXYGEN INHIBITION ON INTERFACIAL BONDING BETWEEN COMPOSITE RESIN LAYERS (복합레진 적층계면에서 oxygen inhibition의 영향에 관한 연구)

  • Choi, Su-Mi;Park, Jae-Hong;Choi, Sung-Chul;Kim, Kwang-Chul;Choi, Young-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.298-307
    • /
    • 2010
  • The purpose of this study was to assess the effect on oxygen inhibition layer(OIL) for the interfacial bonding between resin composite layers, including shear bond strength, fracture modes and degree of conversion. The first layer of specimen was filled with Z-250(shade A3) and was cured for 40s. The second layer of specimen was filled with same composite(shade A1) and was cured for 40s. The first layer of specimens for each group were prepared by methods as followings. Control(curing in atmospheric air), Group1(curing against Mylar strip), Group2(scrubbed with a acetone-soaked cotton), Group3(using Tescera light cup), Group4(using Tescera heat cup), Group5(stored in disti1led water for 30days at $37^{\circ}C$), Group6 (using bonding agent). The results were as follows: 1. There was no statistically significant different shear bond strength between control and group 1(p>0.05). 2. Group 2 showed significantly lower shear bond strength than control and group 1(p<0.05). 3. The observation of the fracture surface leads to the evidence that a major difference occurs in the case of control, group1 and group 3 samples which break mainly cohesively while the other groups break in majority adhesively. 4. The results of FTIR showed that the degree of conversion was the highest in group 2 and the lowest in control group(p<0.05). It can be concluded that an OIL is not necessary for bonding with composite resin. But if a reduced critical amount of the unreacted monomer is present, it was detrimental to bonding additional layers of composite. Further study, such as the quantitative analysis of the unreacted monomer are required.

IS AN OXYGEN INHIBITION LAYER ESSENTIAL FOR THE INTERFACIAL BONDING BETWEEN RESIN COMPOSITE LAYERS? (Layering시 복합레진 층간의 계면 결합에서 oxygen inhibition layer가 필수적인가?)

  • Kim, Sun-Young;Cho, Byeong-Hoon;Baek, Seung-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.405-412
    • /
    • 2008
  • This study was aimed to investigate whether an oxygen inhibition layer (OIL) is essential for the interfacial bonding between resin composite layers or not. A composite (Z-250, 3M ESPE) was filled in two layers using two aluminum plate molds with a hole of 3.7 mm diameter. The surface of first layer of cured composite was prepared by one of five methods as followings, thereafter second layer of composite was filled and cured: Group 1 - OIL is allowed to remain on the surface of cured composite; Group 2 - OIL was removed by rubbing with acetone-soaked cotton; Group 3 - formation of the OIL was inhibited using a Mylar strip; Group 4 - OIL was covered with glycerin and light-cured; Group 5 (control) - composite was bulk-filled in a layer. The interfacial shear bond strength between two layers was tested and the fracture modes were observed. To investigate the propagation of polymerization reaction from active area having a photo-initiator to inactive area without the initiator, a flowable composite (Aelite Flow) or an adhesive resin (Adhesive of ScotchBond Multipurpose) was placed over an experimental composite (Exp_Com) which does not include a photoinitiator and light-cured. After sectioning the specimen, the cured thickness of the Exp_Com was measured. The bond strength of group 2, 3 and 4 did not show statistically significant difference with group 1. Groups 3 and 4 were not statistically significant different with control group 5. The cured thicknesses of Exp_Com under the flowable resin and adhesive resin were 20.95 (0.90) urn and 42.13 (2.09), respectively.

Protective Effects of Lipophilic Extracts from Different Colored Paprikas on Inhibition of $H_2O_2$-induced Gap Junctional Intercellular Communications ($H_2O_2$로 유도된 WB-F344 세포의 GJIC 억제에 대한 색상별 파프리카 추출물의 보호 효과)

  • Kim, Ji-Sun;Kim, Suna
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2014
  • This study analyzed phytochemicals, including various carotenoids, tocopherol and L-ascorbic acid, in green, yellow and orange paprikas (GP, YP and OP) and measured the preventive effects of lipophilic extracts from different colored paprikas on the blockage of gap junctional intercellular communication (GJIC), which is known as a cellular event associated with tumor promotion. Main carotenoids were lutein and ${\beta}$-carotene in GP, lutein, ${\beta}$-carotene, capsanthin, violaxanthin, ${\beta}$-carotene and capsorubin in YP, and lutein, ${\beta}$-carotene, cryptoxanthin and zeaxanthin in OP. Total carotenoid contents were $65.54{\pm}15.87$ mg/100 g dw in OP, $11.98{\pm}0.69$ mg/100 g dw in YP and $10.30{\pm}1.43$ mg/100 g dw in GP. Tocopherol contents were highest in GP compared with in YP and OP, whereas L-ascorbic acid contents were very high in all paprikas. We determined the non-cytotoxic levels of paprika extracts by MTT assay, which showed less formation of reactive oxygen species (ROS) induced by $500{\mu}M$ $H_2O_2$ for 1h. Finally, we showed that pretreatment of paprika extracts prevented inhibition of GJIC induced by $500{\mu}M$ $H_2O_2$ by the scrape-loading/dye-transfer technique. In conclusion, each colored paprika has unique phytochemicals and showed a protective effect on inhibition of GJIC.

Protective Effect of Resveratrol on the Oxidative Stress-Induced Inhibition of Gap Junctional Intercellular Communication in HaCaT Keratinocytes

  • Lee, Jong-Chan;Lee, Sun-Mee;Kim, Ji-Hyun;Ahn, Soo-Mi;Lee, Byeong-Gon;Chang, Ih-Seoup
    • Biomolecules & Therapeutics
    • /
    • v.11 no.4
    • /
    • pp.224-231
    • /
    • 2003
  • The aim of this study was to investigate the effect of resveratrol on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes. Anti-oxidative activity of resveratrol was measured by $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl assay and dichlorodihydrofluorescein diacetate oxidation assay. Gap junctional intercellular communication in HaCaT keratinocytes was assessed using the scrape loading/dye transfer technique. Western blots and reverse transcription-polymerase chain reaction were also analyzed for connexin 43 protein and mRNA expression, respectively. Resveratrol scavenged directly the stable $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl radical over a concentration range of 4 mg/ml ($78.2{\pm}2.7$% of control) to 500 mg/ml ($29.9{\pm}4.2$% of control) and decreased the intracellular reactive oxygen species induced by ultraviolet A (UVA) irradiation ($89.3{\pm}1.1$% of UVA group), ultraviolet B (UVB) irradiation ($70.9{\pm}1.7$% of UVB group) and 12-0-tet-radecanoylphorbol-13-acetate (TPA, $48.3{\pm}1.1$% of TPA group), respectively. UVA irradiation and TPA markedly reduced gap junctional intercellular communication, which was restored by resveratrol. There were no significant differences in the level of connexin 43 protein and mRNA expression among any of the experimental groups. Our data suggests that resveratrol has the protective effect on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes, and this protection is likely due to the scavenging of reactive oxygen species.

Effect of seeding ratio on acidogenic biokinetics in high ammonia concentration

  • Yang, Keun-Young;Shin, Seung-Gu;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-66
    • /
    • 2005
  • Anaerobic digestion is one of the well-known methods for biological treatment handling of concentrated organic matter such as swine $wastewater.^{1)} The anaerobic digestion can reduce organic loading but also hydrolyze non-biodegradable organic $matter.^{2)}$ The feces from the scrapper-type barn are usually collected to make compost and the urine is discarded with swine-slurry wastewater by ocean-dumping or treated by biological methods. The lagoon, aerobic digestion, anaerobic digestion, SBR, $A^{2}/O$, and UCT have been applied for treating swine $wastewater.^{3)} In this study, as a result of the analysis of swine wastewater, the total and soluble chemical oxygen demand was 130g/L and 60g/L, respectively. And the volatile fatty acid as chemical oxygen demand equivalent was 45g/L, which was 75% of soluble chemical oxygen demand. Before everything else, ammonia nitrogen concentration was 6.5 g/L. From biochemical acidogenic potential test, it was concluded that the enhanced acidification process to manage swine waste should be operated in the ammonia nitrogen concentration of less than 1.2 g/L. In the result of seeding ratio experiments with artificial $wastewater^{4)}, the lag period of acidogens was taken the long time because of the inhibition by the $ammonia^{5)}$, however no difference of period by the seeding ratio was not shown. The Haldane-based biokinetics were also evaluated using a method of fourth order Runge-Kutta $approximation.^{6,7)}$ The nonlinear least squares (NLLS) method with a 95% confidence interval was also used. The ranges of maximum microbial growth rate, ${/mu_{max}}$, and half saturation coefficient, $K_{s}$, for acidogenesis of various seeding ratio with artificial wastewater were 6.1 ~ 12.6 $d^{-1}$ and 45,000 ~ 53,500 mg glucose/L, respectively. Also, the methanogenic microbial yield coefficient, Y, and microbial decay rate coefficient, $k_{d}$, and inhibition substrate concentration, $K_{si}$, for the reactors were determined to be 0.32 ~ 0.465 ${/mu}g$/mg glucose; 0.42 ~ 1.01 $d^{-1}$ and 51,500 ~ 55,600 mg glucose/L, respectively.

  • PDF