• Title/Summary/Keyword: oxygen inhibition

Search Result 709, Processing Time 0.027 seconds

Antioxidant Effects of Phenolic Acids and Ginseng Extract in Aqueous System (수용성 계에서 Phenolic Acid류와 인삼 추출물이 갖는 산화방지 효과)

  • Lee, Hyung-Ok;Park, Ock-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.434-438
    • /
    • 1998
  • The antioxidant effects of 700 ppm ginseng extract, 100ppm caffeic acid, ferulic acid, vanillic acid, or ${\alpha}-topherol$ on the 1% linoleic acid aqueous buffer system was studied by measuring malondialdehyde (MDA) and headspace oxygen. The compounds showed antioxidant activities in the following order: $caffeic\;acid{\geq}ferulic\;acid\;>\;{\alpha}-tocopherol$>ginseng extract>vanillic acid, with the oxidation inhibition ratio of 63.5, 62.9, 52.3, 51.2 and 5.6% of the control according to MDA results. The mixture of 100 ppm caffeic acid, 100 ppm ${\alpha}-tocopherol$ and 700 ppm ginseng extract had a high oxidation inhibition ratio of 91.2%. Headspace oxygen results had a similar trend with the MDA results. Headspace oxygen results showed that the antioxidant activities were in order of ferulic acid>caffeic acid>${\alpha}-tocopherol$>ginseng extract>vanillic acid and headspace oxygen contents were 18.56, 17.78, 17.17, 16.65 and 15.95%, respectively.

  • PDF

DNA Damage of Lipid Oxidation Products and Its Inhibition Mechanism (지질산화생성물의 DNA손상작용 및 그 억제기구)

  • KIM Seon-Bong;KANG Jin-Hoon;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.419-430
    • /
    • 1987
  • The damage of plasmid DNA by lipid peroxidation and its inhibition were investigated through the model system of DNA and linoleic acid at $37^{\circ}C$. The degree of DNA damage increased in proportion to the increase of concentration and peroxidation of linoleic acid. DNA damage induced from linoleic acid peroxidation was greatly inhibited by the addition of active oxygen scavengers, especially, singlet of oxygen scavenge$(\alpha-tocopherol,\;cysteine)$ and superoxide anion scavenger(superoxide dismutase, ascorbic acid) in reaction system. These active oxygens, such as superoxide anion and hydrogen peroxide were rapidly generated in the early stage of peroxidation (POV below 100 mg/kg) and also scanvenged by the addition of superoxide dismutase and catalase, respectively. Hydroperoxide isolated from autoxidised linoleic acid showed DNA damage. Hydroperoxide induced-DNA damage was not inhibited by active oxygen scavengers. Lipid oxidation products, malonaldehyde and hexanal, also influenced on the DNA damage. Accordingly, it is speculated that DNA damage by lipid oxidation products is due to active oxygens such as singlet oxygen and superoxide anion formed in the early stage of peroxidation, direct action of hydroperoxide and formation of low molecular carbonyl compound-DNA complex. Furthermore, DNA damage induced by lipid peroxidation was remarkably inhibited by the addition of active oxygen scavengers and natural antioxidative fractions extracted from garlic and ginger. These antioxidative fractions also suppressed the generation of active orygens and linoleic acid oxidation. It is assumed that the inhibition of DNA damage by garlic and ginger extracts is due to the scavenging effect of active oxygens and the inhibition of hydroperoxide and oxidation products formation.

  • PDF

Production of Antibacterial Violet Pigment by Psychrotropic Bacterium RT102 Strain

  • Nakamura, Yoshitoshi;Asada, Chikako;Sawada, Tatsuro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.37-40
    • /
    • 2003
  • The antibacterial action of violet pigment, a mixture of violacein and deoxyviolacein, isolated from phychrotrophic bacterium RT102 strain was examined, and the operational conditions for the effective production of violet pigment were studied. The antibacterial activity of the violet pigment was confirmed for several bacteria such as Bacillus licheniformis, Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, and Pseudomonas aeruginosa, and the high concentration of violet pigment, above about 15mg/L, caused not only growth inhibition but also death of cells. The growth properties of RT102 strain were clarified under various incubation conditions such as pH, temperature, and dissolved oxygen concentration. The maximum violet pigment concentration, i.e. 3.7 g/L, and the maximum productivity of violet pigment, i.e. 0.12 g .L$\^$-1/H$\^$-1/, were obtained in a batch culture of pH 6, 20$^{\circ}C$, and 1 mg/L of dissolved oxygen concentration.

Inhibition of Matrix Metalloproteinases-12 (MMP-12) and Anti-oxidant Effect of Xanthohumol from Hop (Humulus lupulus L.)

  • Lee, Keyong Ho;Yoon, Won Ho
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.261-265
    • /
    • 2012
  • Xanthohumol was isolated from hops (Humulus lupulus L.), and then investigated anti-oxidant effect by AAPH-induced LLC-PK1 cell and oxygen radical absorbance capacity (ORCA) assays and MMP-12 inhibitory effect by direct MMP-12 inhibition assay. The treatment of xanthohumol protected LLC-PK1 cells from AAPH-induced cell damage such as cell viability, SOD and GSH-px reduction in a dose dependant manner (0.1, 1, and $5{\mu}M$), the SOD value was 2.98, 4.51, and 5.77 U/mg protein, and GSH-px value was 30.12, 49.32, and 60.11 U/mg protein. ORAC value of xanthohumol was showed as 4320, 12004, and $14209{\mu}M$ TE/g at the concentration 0.1, 1, and $5{\mu}M$, respectively. The change of SOD and GSH-px values was significantly correlated with the results of ORAC assay, that is, AAPH-induced cell and ORCA assays. In addition, inhibition of MMP-12 that is known to play an important role in skin aging was 14%, 37%, 46%, and 79% at the concentration of 0.01, 0.1, 1, and $5{\mu}M$, respectively. On the basis of these results, xanthohumol from hops (Humulus lupulus L.) showed interesting biological and pharmacological activity such as anti-oxidant effect and anti-aging.

Inhibition of Pitting Corrosion Failure of Copper Tubes in Wet Sprinkler Systems (스프링클러 구리배관의 공식 파손 억제)

  • Suh, Sang Hee;Suh, Youngjoon;Lee, Jonghyuk;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2020
  • The inhibition of pitting corrosion failure of copper sprinkler tubes in wet sprinkler systems was studied. First, an apparatus and technology for removing air in the sprinkler tubes by vacuum pumping and then filling the tubes with water were developed. Using this apparatus and technology, three methods for inhibiting the pitting corrosion of the copper sprinkler tubes installed in several apartment complexes were tested. The first one was filling the sprinkler tubes with water bubbled by high-pressure nitrogen gas to reduce the dissolved oxygen concentration to lower than 2 ppm. In the second method, the dissolved oxygen concentration of water was further reduced to lower than 0.01 ppm by sodium sulfite. In the third method, the sprinkler tubes were filled with benzotriazole (BTAH) dissolved in water. The third method was the most effective, reducing the failure frequency of the sprinkler tubes due to pitting corrosion by more than 80%. X-ray photoelectron spectroscopy analyses confirmed that a Cu-BTA layer was well coated on the inside surface of the corrosion pit, protecting it from corrosion. A potentiodynamic polarization test showed that BTAH should be very effective in reducing the corrosion rate of copper in the acidic environment of the corrosion pit.

Effect of Carrier Size on the Performance of a Three-Phase Circulating-Bed Biofilm Reactor for Removing Toluene in Gas Stream

  • Sang, Byoung-In;Yoo, Eui-Sun;Kim, Byung-J.;Rittmann, Bruce E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1121-1129
    • /
    • 2008
  • A series of steady-state and short-term experiments on a three-phase circulating-bed biofilm reactor (CBBR) for removing toluene from gas streams were conducted to investigate the effect of macroporous-carrier size (1-mm cubes versus 4-mm cubes, which have the same total surface area) on CBBR performance. Experimental conditions were identical, except for the carrier size. The CBBR with 1-mm carriers (the 1-mm CBBR) overcame the performance limitation observed with the CBBR with 4-mm carriers (the 4-mm CBBR): oxygen depletion inside the biofilm. The 1-mm CBBR consistently had the superior removal efficiencies of toluene and COD, higher than 93% for all, and the advantage was greatest for the highest toluene loading, $0.12\;M/m^2-day$. The 1-mm carriers achieved superior performance by minimizing the negative effects of oxygen depletion, because they had 4.7 to 6.8 times thinner biofilm depths. The 1-mm carriers continued to provide protection from excess biomass detachment and inhibition from toluene. Finally, the 1-mm CBBR achieved volumetric removal capacities up to 300 times greater than demonstrated by other biofilters treating toluene and related volatile hydrocarbons.

Effect of Carthami-Flos aquacupuncture on t-Butylhydroperoxide- induced inhibition of Na+-K+-ATPase activity in cerebral synaptosomes (홍화약침액(紅花藥鍼液)이 t-Butylhydroperoxide에 의한 가토(家兎)의 뇌조직(腦組織) Na+-K+-ATPase 활성장애(活性障碍)에 미치는 영향(影響))

  • Kim, Cheol-Woong;Seo, Jung-Chul;Youn, Hyoun-Min;Jang, Kyung-Jeon;Song, Choon-Ho;Ahn, Chang-Beohm
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.150-160
    • /
    • 2001
  • Objectives ; This study was undertaken to determine whether Carthami-Flos aquacapuncture (CFA) exerts protective effect against oxidant-induced inhibition of $Na^+-K^+$-ATPase activity in cerebral synaptosomes. Methods and Results ; The enzyme activity was dependent on incubation time and enzyme protein concentrations. An oxidant t-butylhydroperoxide (tBHP) at 1 mM concentration caused a significant inhibition of $Na^+-K^+$-ATPase activity, which was prevented by addition of 0.01% CFA. tBHP inhibition and CFA protection were independent on incubation time or enzyme protein concentrations. The enzyme activity was increased by ATP in a dose dependent manner. Effects of tBHP and CFA were not affected by ATP cocentrations. tBHP (1 mM) produced a significant increase in lipid peroxidation in cerebral synaptosomes, which was prevented by 0.01% CFA. CFA decreased oxygen free radicals generated induced by the phorbol-ester in a dose-dependent manner in human neutrophil. Conclusions ; These results suggest that CFA exerts protective effect against tBHP-induced inhibition of $Na^+-K^+$-ATPase activity, which is due to by an antioxidant action resulting from a direct scavenging effect of oxygen free radicals in the cerebral synaptosomes.

  • PDF

Angiotensin II-Induced Generation of Reactive Oxygen Species Is Regulated by a Phosphatidylinositol 3-Kinase/L-Type Calcium Channel Signaling Pathway (Angiotensin II에 의해 유도되는 활성산소발생 기전에 대한 연구)

  • Jin, Seo Yeon;Ha, Jung Min;Kim, Young Whan;Lee, Hye Sun;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.231-236
    • /
    • 2015
  • Angiotensin II (AngII) is an essential hormone that affects vascular physiology. For example, stimulation of vascular smooth muscle cells (VSMCs) rapidly induces vasoconstriction and results in the up-regulation of blood pressure. Chronic stimulation of VSMCs with AngII also results in hypertrophy. In this study, we confirmed an involvement of phosphatidylinositol 3-kinase (PI3K)-dependent calcium mobilization in AngII-induced generation of reactive oxygen species (ROS). Stimulation of rat aortic smooth muscle cells (RASMCs) with AngII significantly induced the generation of ROS in a dose- and time-dependent manner. AngII-induced generation of ROS was completely abolished by pharmacological inhibition of PI3K (with LY294002), but inhibition of the ERK signaling pathway had no effect. AngII-induced calcium mobilization was completely blocked by inhibition of PI3K, whereas inhibition of the ERK signaling pathway by PD98059 was ineffective. Depletion of extracellular calcium or inhibition of the L-type calcium channel by nifedipine completely blocked AngII-induced calcium mobilization. Depletion of extracellular calcium by EGTA and incubation of RASMCs with calcium-free medium both significantly blocked AngII-induced ROS generation. Inhibition of the L-type calcium channel also significantly blocked AngII-induced ROS generation. These results suggest that AngII-induced ROS generation is regulated by calcium mobilization, which, in turn, is modulated by a PI3K/L-type calcium channel signaling pathway.

Stachys sieboldii M iq. Protects SH-SY5Y Cells Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Inhibition of Mitochondrion-Mediated Apoptosis Pathway (허혈-재관류 유도 SH-SY5Y 모델에서 미토콘드리아 매개 Apoptosis 기전 제어를 통한 초석잠 추출물의 세포보호 효과)

  • Jin-Woo Jeong;Eun Jung Ahn;Chul Hwan Kim;Su Young Shin;Seung Young Lee;Kyung-Min Choi;Chang-Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.57-57
    • /
    • 2021
  • Oxygen glucose deprivation/re-oxygenation (OGD/R) induces neuronal injury via mechanisms that are believed to mimic the pathways associated with brain ischemia. Stachys sieboldii Miq. (Chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of S. sieboldii Miq. (SSM) in OGD/R induced neuronal injury is not yet fully understood. The present research is aimed to investigate the protective effect and possible mechanisms of SSM extract treatment in an in vitro model of OGD/R to simulate ischemia/reperfusion Injury. Pretreatment of these cells with SSM significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) by increasing GPx, SOD, and decreasing MDA. SSM decreased mitochondrial damage caused by OGD/R injury and inhibited the release of cyt-c from mitochondrion to cytoplasm in SH-SY5Y cells. Furthermore, neuronal cell apoptosis caused by OGD/R injury was inhibited by SSM, and SSM could decrease apoptosis by increasing ratio of Bcl-2/Bax and inhibiting caspase signaling pathway in SH-SY5Y cells. SSM demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro model, and this effect was the inhibition of mitochondria-mediated apoptosis pathway by scavenging of ROS generation. Therefore, SSM may be a promising neuroprotective strategy against ischemic stroke.

  • PDF

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.