• 제목/요약/키워드: oxygen barrier

Search Result 326, Processing Time 0.024 seconds

Effects of barrier film on optical properties of quantum dot film (베리어 필름이 양자점 필름의 광특성에 미치는 영향)

  • Lee, Jung-Il;Kim, Young-Ju;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.78-81
    • /
    • 2020
  • Quantum dot efficiency was increased to evaluate reliability and optical characteristics using incidental materials. Quantum dot was manufactured by wrapping a sandwich type quantum layer using a product with a barrier property to prevent water and oxygen because it is vulnerable to oxygen and moisture. We used the three quantum dot films consisting of quantum dot only and quantum dot products consisting of film and barrier film combined with PET in the quantum dot product to evaluate the change over 650 hours under high temperature and high humidity conditions at 60℃ and 90 % humidity. As a result, the quantum dot product with Barrier Film has lowered luminance by 8 %, CIE x by 2 % and CIE y by 8 %. Quantum dot products exposed to moisture and oxygen were oxidized and measured low before measurement.

Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature (열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.

Thermal Stability of $\textrm{RuO}_2$ Thin Film Annealed at High Temperature in Oxygen Atmosphere ($\textrm{RuO}_2$ 박막의 산소 분위기 열처리시 열적 안정성에 관한 연구)

  • O, Sang-Ho;Park, Chan-Gyeong;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1090-1098
    • /
    • 1998
  • $RuO_2$ thin films were deposited on Si and Ru/Si substrates by rf magnetron reactive sputtering and annealed in oxygen atmosphere(1atm) to investigate their thermal stability and diffusion barrier property. $RuO_2$ thin films were thermally stable up to 700\ulcorner for 10min. in oxygen atmosphere and showed excellent barrier property against the interdiffusion of silicon and oxygen. After annealing at $750^{\circ}C$ , however, volatilization to higher oxide occurred at the surface and inside of $RuO_2$ thin film and diffusion barrier property was also deteriorated. When annealed at $800^{\circ}C$, $RuO_2$thin film showed a different microstructure from that of $RuO_2$ thin film annealed at 75$0^{\circ}C$. It is likely that surface defect structure of $RuO_2$, $RuO_3$, and excess oxygen had an influence on the mode of volatilization with increasing annealing temperature.

  • PDF

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Graphene Oxide Nanocomposite Films: Thermomechanical Properties, Oxygen Transmission Rates, and Hydrolytic Degradation

  • You, Eun Jung;Ha, Chang-Sik;Kim, Gue-Hyun;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene oxide (GO) nanocomposite films containing various content of GO were prepared using solution casting method. The effect of GO content on Young's modulus and dispersion of GO in PHBV matrix was investigated. Also, the thermomechanical properties, oxygen transmission rates and hydrolytic degradation of PHBV/GO nanocomposite films were studied. The addition of GO into PHBV improves the Young's modulus and decreases thermal expansion coefficient. The improvement can be mainly attributed to good dispersion of GO and interfacial interactions between PHBV and GO. Furthermore, PHBV/GO nanocomposite films show good oxygen barrier properties. PHBV/GO nanocomposites show lower hydrolytic degradation rates with increasing content of GO.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Characteristics of TaN Film as to Cu Barrier by PAALD Method (PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성)

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.5-8
    • /
    • 2003
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and $SiO_2$ by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and NH$_3$ as precursors. The TaN films were deposited at $250^{\circ}C$ by both method. The growth rates of TaN films were 0.8${\AA}$/cycle for PAALD and 0.75${\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w -1.8:0.12 mm but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was 11g/cmand one for thermal ALD TaN was 8.3g/$cm^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200 nm)/TaN(10 nm)/$SiO_2$(85 nm)/ Si structure was shown at temperature above $700^{\circ}C$ by XRD, Cu etch pit analysis.

  • PDF

Magnetic Effects of La0.67Sr0.33MnO3 on W-C-N Diffusion Barrier Thin Films

  • Song, Moon-Kyoo;So, Ji-Seop;Shim, In-Bo;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.133-136
    • /
    • 2005
  • In the case of contacts between semiconductor and metal in semiconductor devices, they tend to be unstable because of thermal budget. To prevent these problems we deposited W-C-N diffusion barrier for preventing the interdiffusion between metal and semiconductor. The thickness of the barrier is $1,000{\AA}$ and the pressure is 3 mTorr during the deposition. In this work we coated LSMO (CMR material) on W-C-N diffusion barrier and then we studied the interface effects between LSMO layer and W-C-N diffusion barrier. We got results that the magnetic characteristics of LSMO thin film are still maintained after annealing at $800^{\circ}C$ for 3 hr because W-C-N thin diffusion barrier was prevented the diffusion of oxygen between LSMO and Si substrate.

Phenol Removal Using Oxygen-Plasma Discharge in the Water (산소-플라즈마 방전을 이용한 수중의 페놀 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.915-923
    • /
    • 2013
  • Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~ 220 V), oxygen flow rate (2 ~ 7 L/min), pH (3 ~ 11), and initial phenol concentration (12.5 ~ 100.0 mg/L) on phenol degradation and change of $UV_{254}$ absorbance were investigated. Absorbance of $UV_{254}$ can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were $5.204{\times}10^{-1}min^{-1}$ and $3.26{\times}10^{-2}min^{-1}$, respectively.

Oxygen Adsorption Process on ZnO Single Crystal

  • 전진;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1175-1179
    • /
    • 1997
  • The adsorption of oxygen on ZnO was monitored by measuring the capacitance of two contacting crystals which have depletion layers originated from the interaction between oxygen and ZnO at 298 K-473 K. An admission of oxygen to the sample induced an irreversible increase in the depth and the amount of adsorbed oxygen was less than 0.001 monolayer in the experimental condition. The relation between pressure of oxygen and variation of the depth was tested from the view point of Langmuir or Freundlich isotherm. Using Hall effect measurement and kinetic experiment, a model equation on the adsorption process was proposed. From the results, it was suggested that oxygen adsorption depended on the rate of electron transfer from ZnO to oxygen while the amount of adsorbed oxygen was kinetically restricted by the height of surface potential barrier.

Bipolar Charge Distribution of Nano Particles Passing through the Dielectric Barrier Discharge Reactor (DBD(Dielectric Barrier Discharge)에 의해 하전된 나노입자의 양극성 대전량 분포)

  • Ji, Jun-Ho;Kang, Suk-Hoon;Byeon, Jung-Hoon;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1684-1689
    • /
    • 2003
  • Dielectric Barrier Discharges (DBD) in oxygen and air are well established for the production of large quantities of ozone and are more recently being applied to a wider range of after treatment processes for HAPs(Hazardous Air Pollutants). The potential use as a charger for particle collection are not well known. In this work, we measured charge distribution of nanometer or submicron sized particles passing through the dielectric barrier discharge reactor. The bipolar charge characteristics of particles passing DBD reactor were investigated. Fluorometric method using uranine particles and a fluorometer was employed to examine the bipolar charging characteristics of the charged particles by DBD reactor. Finally, the charge distributions of particles were determined from the electrical mobility classification using DMA.

  • PDF