• Title/Summary/Keyword: oxygen annealing

Search Result 506, Processing Time 0.025 seconds

Origin of Decreasing the Dielectric Constant and the Effect of Ionic Polarization (유전상수가 낮아지는 원인과 이온 분극의 효과)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.453-458
    • /
    • 2009
  • SiOC film was deposited by the chemical vapor deposition using BTMSM and oxygen mixed precursor. The characteristic of SiOC film varied with increasing of the gas flow rate ratios. The dielectric constant was obtained by C-V measurement using the structure of metal/SiOC film/Si. The space effect due to the steric hindrance between alkyl group at terminal bond of Si-$CH_3$ made the pores, and increased the thickness. However, the SiOC film due to the lowering of the polarization decreased the thickness and then decreased the dielectric constant. After annealing process, the dielectric constant decreased because of the evaporation of the OH or $H_2O$ sites. The thickness was related to the lowering of the dielectric constant by the reduction of the polarization and the thickness decreased with the decrease of the dielectric constant. The refractive index was in inverse proportion to thickness. The trends of the thickness and refractive index did not change after annealing.

The mechanism of Bi$_{0.5}Pb_3Sr_2Ca_2CuO_{\delta}$ and (Ca,Sr)$_2$(BiPb)O$_4$ phase as a flux-pinning center in (Bi,Pb)$_2Sr_2Ca_2CuO_{10}$ superconductor ((Bi,Pb)$_2Sr_2Ca_2CuO_{10}$ 초전도체에l서 flux-pinning center로서 Bi$_{0.5}Pb_3Sr_2Ca_2CuO_{\delta}$ 및 (Ca,Sr)$_2$(BiPb)O$_4$ 상의도입 기구)

  • Chung, Jun-Ki;Kim, Cheol-Jin;Lee, Sang-Hee;Yoo, Jae-Moo;Kim, Hae-Doo;Koh, Jae-Woong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.300-304
    • /
    • 1999
  • To tap the feasibility of exploiting the 2$^{nd}$ phases as flux-pinning centers in the (Bi,Pb)$_2Sr_2Ca_2CuO_{10}$ superconductor, the size and the distribution of the precipitates have been controlled by changing reaction temperature and time, oxygen partial pressure Po$_2$ and annealing condition. Various annealing heat treatments were also conducted on the as-received 61 filament Bi-2223 tapes with Bi$_{1.8}Pb_{0.4}Sr_2Ca_{2.2}Cu_3O_8$ starting composition and annealed specimen were analyzed with XRD, SEM, EDS and TEM.. The grain size of (Ca,Sr)$_2$(BiPb)O$_4$ or Bi$_{0.5}Pb_3Sr_2Ca_2CuO_{\delta}$ was controllable by optimizing the heat treatment condition and critical current density (J$_c$) showed dependence on the size of the 2$^{nd}$ phases.

  • PDF

Study on Lowering of the Polarization in SiOC Thin FIlms by Post Annealing (SiOC 박막에서 열처리에 의한 분극의 감쇄현상에 관한 연구)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1747-1752
    • /
    • 2012
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane (BTMSM) and oxygen mixed precursor by the chemical vapor deposition. The dielectric constant is measured by MIS(metal/insulator/Si) structure, but it could decrease the reliability because the uniformity is not assured. To research the dielectric constant of SiOC film, the range of low polarization was researched in SiOC film using the optical analysis and hardness, and then calculated the dielectric constant of SiOC film with amorphous structure of high degree. After annealing, the dielectric constant of SiOC film was decreased owing to the lowering of polarization, and FTIR spectra of the main bond was shifted to higher wave number. The main bond of 950~1200 cm-1 was composed of the Si-C and Si-O bonds. The intensity increases in Si-O bond infers the bonding strength became stronger than that of deposited film. Annealed SiOC film showed 2.06 in dielectric constant.

Metal Gate Electrode in SiC MOSFET (SiC MOSFET 소자에서 금속 게이트 전극의 이용)

  • Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.358-361
    • /
    • 2002
  • Self-aligned MOSFETS using a polysilicon gate are widely fabricated in silicon technology. The polysilicon layer acts as a mask for the source and drain implants and does as gate electrode in the final product. However, the usage of polysilicon gate as a self-aligned mask is restricted in fabricating SiC MOSFETS since the following processes such as dopant activation, ohmic contacts are done at the very high temperature to attack the stability of the polysilicon layer. A metal instead of polysilicon can be used as a gate material and even can be used for ohmic contact to source region of SiC MOSFETS, which may reduce the number of the fabrication processes. Co-formation process of metal-source/drain ohmic contact and gate has been examined in the 4H-SiC based vertical power MOSFET At low bias region (<20V), increment of leakage current after RTA was detected. However, the amount of leakage current increment was less than a few tens of ph. The interface trap densities calculated from high-low frequency C-V curves do not show any difference between w/ RTA and w/o RTA. From the C-V characteristic curves, equivalent oxide thickness was calculated. The calculated thickness was 55 and 62nm for w/o RTA and w/ RTA, respectively. During the annealing, oxidation and silicidation of Ni can be occurred. Even though refractory nature of Ni, 950$^{\circ}C$ is high enough to oxidize it. Ni reacts with silicon and oxygen from SiO$_2$ 1ayer and form Ni-silicide and Ni-oxide, respectively. These extra layers result in the change of capacitance of whole oxide layer and the leakage current

  • PDF

Oxidation and Neutral Electrolytic Pickling Behavior of 304 and 430 Stainless Steels (304 및 430 스테인레스 강판의 산화 및 중성염 전해산세 거동)

  • Kim T. S.;Park Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.285-293
    • /
    • 2004
  • Oxidation behavior of 304 and 430 stainless steel were studied using thin film X-ray analysis and glow discharge spectrum analysis (here-after GDS). The oxidation layer of 304 stainless steel was composed of $Cr_2O_3\;and\;FeCrO_4$ and its thickness was about $1.5{\mu}m$ after $1\~5$ minutes of annealing at $1120^{\circ}C$ open air. However, the oxidation layer of 430 stainless steels was mainly composed of $Cr_2O_3$ and its typical thickness was 0.5um after $1\~5$ minutes of annealing at $1000^{\circ}C$ open air. Electro-chemical analysis revealed that the descaling of oxidation layer could be activated by Fe, Cr dissolution from the matrix behind the oxidation layer at the current density of $5\~10ASD$ and by Fe, Cr-oxide dissolution from the oxidation layer at the current density over than 10ASD. Electrolytic stripping of 430 and 304 revealed the intial incubation period of descaling by oxygen evolving at low current density range such as $5\~10ASD$. However the dissolution of oxide layer was occurred when applying the anodic current of $10\~20ASD$ on 430 and 304 stainless steels. It was suggested that the electrolytic pickling of high Cr bearing stainless steel such as 430 and 304 seemed to be the more effective in the high current density range such as $10\~20ASD$ than the low current density range such as $5\~10ASD$.

  • PDF

Effects of post-annealing temperature of CeO$_2$ buffer layers on the surface morphology, structures and microwave properties of YBa$_2$Cu$_3$O$_{7-{\delta}}$ films on sapphire

  • Yang, W.I.;Lee, J.H.;Ryu, J.S.;Ko, Y.B.;Chung, Y.S.;Hur, Jung;Lee, Sang-Young
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.201-206
    • /
    • 2000
  • Effects of the post-annealing temperature of CeO$_2$ buffer layers on the properties of YBCO films on CeO$_2$-buffered sapphire were investigated. 45 nm-thick CeO$_2$ buffer layer was prepared in-situ on r-cut sapphire using an on-axis rf magnetron sputtering method, which was later post-annealed at temperatures between 950$^{\circ}$C and 1100$^{\circ}$C in an oxygen-flowing environment. YBCO films were prepared on CeO$_2$-buffered sapphire (CbS), for which the surface morphology, crystal structures and electrical properties of the YBCO films were studied. YBCO films on post-annealed CbS appeared to have better properties than those on as-grown CbS with regard to the morphological, structural and electrical properties when the YBCO films were prepared on CeO$_2$ buffer layer post-annealed at temperatures of 1000 - 1050$^{\circ}$C. A TE$_{011}$ mode rutileloaded cylindrical cavity resonators was fabricated with the YBCO films placed as the endplates, for which the unloaded Q of the resonator was measured. It turned out that the resonator with the endplates prepared from the YBCO films on postannealed CbS at 1000 $^{\circ}$C showed the highest unloaded Q with the value more than 8 ${\times}$ 10$^5$ at 30 K and 8.6 CHz, revealing that the YBCO films on post-annealed CbS at 1000$^{\circ}$C the temperature could be the lowest among the YBCO films on post-annealed CbS.

  • PDF

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • Yun, Yeong-Jun;Jo, Seong-Hwan;Kim, Chang-Yeol;Nam, Sang-Hun;Lee, Hak-Min;O, Jong-Seok;Kim, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

Inorganic Printable Materials for Thin-Film Transistors: Conductor and Semiconductor

  • Jeong, Sun-Ho;Song, Hae-Chon;Lee, Byung-Seok;Lee, Ji-Yoon;Choi, Young-Min;Ryu, Beyong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.18.2-18.2
    • /
    • 2010
  • For the past a few years, we have intensively researched the printable inorganic conductors and ZnO-based amorphous oxide semiconductors (AOSs) for thin-film transistors. For printable conductor materials, we have focused on the aqueous Ag and Cu ink which possess a variety of advantages, comparing with the conventional metal inks based on organic solvent system. The aqueous Ag ink was designed to achieve the long-term dispersion stability using a specific polymer which can act as a dispersant and capping agent, and the aqueous Cu ink was carefully formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. For printable ZnO-based AOSs, we have researched the noble way to resolve the critical problem, a high processing-temperature above $400^{\circ}C$, and recently discovered that Ga doping in ZnO-based AOSs promotes the formation of oxide lattice structures with oxygen vacancies at low annealing-temperatures, which is essential for acceptable thin-film transistor performance. The mobility dependence on annealing temperature and AOS composition was analyzed, and the chemical role of Ga are clarified, as are requirements for solution-processed, low-temperature annealed AOSs.

  • PDF

The Effects of Deposition Temperature of Pt Top Electrodes on the Electrical Properties of PZT Thin Films (Pt 상부 전극 증착온도가 PZR 박막의 전지적 특성에 미치는 영향)

  • Lee, Kang-Woon;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1048-1054
    • /
    • 1998
  • The effects of deposition temperature of Pt top electrodes on the electrical properties of Pb(Zr,Ti))$O_3$, (PZT) thin film were investigated. When the Pt top electrodes were deposited at substrate temperatures of $200^{\circ}C$ or above,the ferroelectric properties of the PZT thin film under the Pt electrode were severely degraded. Whereas those of the PZT film where the Pt electrodes were not deposited were not degraded. Water vapors which remained in the vacuum chamber were dissociated into hydrogen atoms by the catalysis of Pt top electrode, and those hydrogen atoms diffused into the PZT film and produced oxygen vacancies at high substrate temperature, resulting in the degradation of the ferroelectric properties of the PZT film located under the Pt electrode. Since the water vapors could not be dissociated into hydrogen atoms without the catalysis of Pt. the degradation of the PZT film did not take place where the Pt electrode were not deposited. The degraded feroelectric properties could be recovered by rapid thermal annealing (RTA) treatment. On the other hand. leakage current characteristics were improved with increasing the deposition temperature of Pt top electrodes.

  • PDF

Study on blood compatibility of diamond-like carbon and titanium nitride films (Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구)

  • Yun Ju-Young;Bae Jin-Woo;Park Ki-Dong;Goo Hyun-Chul;Park Hyung-Dal;Chung Kwang-Wha
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2005
  • There is an increasing interest in developing novel coating to improve the blood compatibility of medical implants. Diamond-like carbon(DLC) and titanium nitride(TiN) films have been proposed as potential biomedical coatings due to their chemical k physical properties and moderate biocompatibility. To study the correlation between blood compatibility and physical properties of the films, the fibrinogen adsorption on the surface as well as morphology & wettability were investigated. The quantity of fibrinogen adsorption are Tower for TiN than DLC, which correlates with a higher hydrophilicity of TiN film. To reduce the quantity of fibrinogen adsorption on the film, plasma treatment and furnace annealing were performed, respectively. With the use of oxygen plasma and furnace annealing, the amount of fibrinogen adsorption on TiN film was remarkably reduced, while there was no decrease of the quantity with DLC.