• Title/Summary/Keyword: oxyR regulon

Search Result 3, Processing Time 0.018 seconds

OxyR Regulon Controls Lipid Peroxidation-mediated Oxidative Stress in Escherichia coli

  • Yoon, Seon-Joo;Park, Ji-Eun;Yang, Joon-Hyuck;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.297-301
    • /
    • 2002
  • Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. The oxyR gene product regulates the expression of enzymes and proteins that are needed for cellular protection against oxidative stress. Upon exposure to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the Escherichia coli oxyR overexpression mutant was much more resistant to lipid peroxidation-mediated cellular damage, when compared to the oxyR deletion mutant in regard to growth kinetics, viability, and DNA damage. The deletion of the oxyR gene in E. coli also resulted in increased susceptibility of superoxide dismutase to lipid peroxidation-mediated inactivation. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in free radical-induced cellular damage. Also, the oxyR regulon plays an important protective role in lipid peroxidation-mediated cellular damage.

Control of Singlet Oxygen-induced Oxidative Damage in Escherichia coli

  • Kim, Sun-Yee;Kim, Eun-Ju;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.353-357
    • /
    • 2002
  • Singlet oxygen ($^1O_2$) is highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide desmutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of anticxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.

Genetic Responses to Metal ion in Aslmonella typhimurium (Salmonella typhimurium의 금속이온에 대한 유전적 반응)

  • Jung, Ju-Ri;Park, Kyeong-Ryang;Koh, Sang-Kyun;Park, Yong-Keun;Lee, In-Soo
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.216-225
    • /
    • 1998
  • Metal ion-induced and it’s regulatory genes were screened in virulent salmonella typhimurium UK1 and tested cross-regulation with various stresses. Using the techniqud of P22-MudJ(Km, lacZ)-directed lacZ operon fusion, LF40 cuiA::MudJ and Lf153 cuiD::MudJ which were induced by copper were selected. cuia and cuiD were determined anaerobic coper inducible and copper tolerance response gene, respectively. Also cuiA and cuiD locus were determined at 81 and 8min, respectively, on salmonella Genetic Map. The two regulators were identified as cuaR, and cudR, which controls cuiA and cuiD, respectively. cuaR, and cudR appeared as negative regulators because the expression of cuiA-lac-Z and cuiD-lacZ were increased. Copper adapted UK1 showed high resistance to H$_{2}$O$_{2}$, but cuiD did not. The product of the cudR locus was responsible for decreasing the tolerance to copper and H$_{2}$O$_{2}$. Furthemore cuiA and cuiD locus were found to be part of a regulon under the control of a trans-acting regulators, rpoS, oxyR and relA. Therefore, the results suggest CTR participate with oxidative stress on Salmonella.

  • PDF