• Title/Summary/Keyword: oxy-fuel system

Search Result 34, Processing Time 0.02 seconds

Analysis of Solid Oxide Fuel Cell/Oxy-fuel Combustion Power Generation System Using Oxygen Separation Technology (산소분리기술을 사용한 연료전지/순산소연소 발전시스템 해석)

  • Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-54
    • /
    • 2008
  • This study aims to devise and analyze a power generation system combining the solid oxide fuel cell and oxy-fuel combustion technology. The fuel cell operates at an elevated pressure, a constituting a SOFC/gas turbine hybrid system. Oxygen is extracted from the high pressure cathode exit gas using ion transport membrane technology and supplied to the oxy-fuel power system. The entire system generates much more power than the fuel cell only system due to increased fuel cell voltage and power addition from oxy-fuel system. More than one third of the power comes out of the oxy-fuel system. The system efficiency is also higher than that of the fuel cell only system. Recovering most of the generated carbon dioxide is major advantage of the system.

  • PDF

A Study on the Structure of Turbulent non-Premixed Oxy-fuel Flame Using CMC Model-based Simulation (CMC 모델 기반 수치해석을 사용한 순산소 난류확산화염 구조 연구)

  • Kim, Jong-Soo;Sreedhara, S.;Huh, Kang-Yeol;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2008
  • Oxy-fuel flame has a significantly different structure from that of air-fuel flame because of its high temperature. This study is aimed to find out the difference of the oxy-fuel flame structure in order to understand reaction mechanism closely, which is crucial to design real-scale oxy-fuel combustion system. By examining pictures of counterflow flame and LIF images, we found that oxy-fuel flame had two-zone structure: fuel decomposition region and distributed CO oxidation region. In the oxy-fuel flame, OH radical was distributed intensely through the whole flame due to its higher flame temperature than crossover temperature. For showing those features of the oxy-fuel flame, 1 MW scale IFRF oxy-natural gas burner was simulated by conditional moment closure(CMC) model. Calculation results were compared with experimental data, and showed agreements in trend. In the simulated distributions of fuel decomposition/CO oxidation rates, CO oxidation region was also separated from fuel decomposition zone considerably, which showed the two-zone structure in the oxy-fuel flame.

  • PDF

Development of High Performance Intelligent Oxy-fuel Combustion Reheating Furnace (고성능 순산소 연소시스템의 가열특성에 대한 연구)

  • Lee, Sang-Jun;Noh, Dong-Soon;Kim, Hyouck-Ju;Lee, Eun-Kyung;Choi, Kyu-Sung;Ko, Chang-Buk;Lee, Sung-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.175-180
    • /
    • 2004
  • Improving furnace efficiency is a high priority need for aluminum, glass, steel and other metal casting industries. Oxy-fuel combustion is considered to be one of the most effective method to improve thermal efficiency and reduce $NO_x$, SOx and $CO_2$ emissions for high temperature furnaces. The characteristics of an oxy-fuel flame, in particular its shape, radiation profile and exhaust gas composition are considerably different to those of an air-fuel burner. For this reason, a new approach is needed regarding factors such as burner design, power input levels, number and positioning strategies of burners and also control philosophies. In this paper will discuss the latest developments of high performance oxy-fuel combustion reheating furnace system. This high performance oxy-fuel combustion system will be shown to be technologically superior to other types of combustion systems in the areas of fuel efficiency, emissions and productivity.

  • PDF

Parametric Study of Regenerative System with Oxy-Fuel Combustion (순산소 축열 연소시스템에서의 설계 파라미터에 관한 연구)

  • Hong, Sungkook;Noh, Dongsoon;Lee, Eunkyung
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.13-14
    • /
    • 2013
  • The aim of this study is to investigate the parametric characteristics on regenerative system with oxy-fuel combustion by experiment. Regenerative system with a pair of oxygen burners and regenerators is used for evaluating regenerator characteristics according to design parameters such as ball (regenerator medium) size, regenerator weight, and bypass of exhaust gas. The temperature profiles with time are varied by ball size and regenerator weight. The bypass of exhaust gas shows that the heat recovery ratio increases while the regenerating temperature efficiency slightly decreases.

  • PDF

Performance Analysis of an Oxy-fuel Combustion Power Generation System Based on Waste Heat Recovery: Influence of CO2 Capture (배열회수형 순산소연소 발전시스템의 성능해석: CO2 포집의 영향)

  • Tak, Sang-Hyun;Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.968-976
    • /
    • 2009
  • As the global warming becomes a serious environmental problem, studies of reducing $CO_2$ emission in power generation area are in progress all over the world. One of the carbon capture and storage(CCS) technologies is known as oxy-fuel combustion power generation system. In the oxy-fuel combustion system, the exhaust gas is mainly composed of $CO_2$ and $H_2O$. Thus, high-purity $CO_2$ can be obtained after a proper $H_2O$ removal process. In this paper, an oxy-fuel combustion cycle that recovers the waste heat of a high-temperature fuel cell is analyzed thermodynamically. Variations of characteristics of $CO_2$ and $H_2O$ mixture which is extracted from the condenser and power consumption required to obtain highly-pure $CO_2$ gas were examined according to the variation of the condensing pressure. The influence of the number of compression stages on the power consumption of the $CO_2$ capture process was analyzed, and the overall system performance was also investigated.

Oxy-fuel Combustion Boiler for $CO_2$ capturing:50 kW Class Model Test and Numerical Simulation (순산소 연소를 채택한 $CO_2$ 회수형 보일러의 성능특성:50kW급 모형 실험 및 수치해석)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3276-3281
    • /
    • 2007
  • A novel oxy-fuel burner for a boiler has been devised and composed into a 50 kW class boiler system. A series of test has been conducted to show the characteristics of combustion, exhaust gas and the boiler. Numerical simulations have been also performed and validated against the experimental data to discuss detailed physics. The oxy-fuel burner can effectively heat the combustion chamber with the significantly reduced combustion gas, which enables to realize the compactness of the system. The composition of exhaust gas reveals that the sealing of the system is crucial to achieve high $CO_2$ concentration and low $NO_X$ emission.

  • PDF

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Enhancement of MCFC System Performance by Adding Bottoming Cycles (하부 사이클 추가에 의한 MCFC 시스템의 성능향상)

  • Ji, Seung-Won;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.907-916
    • /
    • 2010
  • Integration of various bottoming cycles such as the gas turbine (GT) cycle, organic Rankine cycle, and oxy-fuel combustion cycle with an molten carbonate fuel cell (MCFC) power-generation system was analyzed, and the performance of the power-generation system in the three cases were compared. Parametric analysis of the three different integrated systems was carried out under conditions corresponding to the practical use and operation of MCFC, and the optimal design condition for each system was derived. The MCFC/oxy-combustion system exhibited the greatest power upgrade from the MCFC-only system, while the MCFC/GT system showed the greatest efficiency enhancement.

A Study on Oxy-Fuel Combustion System with Multi-Jet Burner-Numerical Simulation with PDF Combustion Model (다공 동축 버너를 이용한 순산소 연소 시스템에 관한 연구-PDF 연소 모델을 이용한 수치해석)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Hong, Jung-Goo;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.504-512
    • /
    • 2008
  • The characteristics of nonpremixed oxy-fuel flame in a multi-jet burner were experimentally and numerically investigated. The overall flow rate of fuel and oxygen was fixed, and the oxygen feeding ratio (OFR) was varied by 0.25, 0.5, and 0.75. The results of numerical simulation were compared with the measured results which are temperature profile and direct flame observation. The probability density function (PDF) model was applied accounting to the description between turbulence and chemistry, and standard ${\kappa}-{\varepsilon}$ model was used for turbulent flow field. Equilibrium assumption is very reasonable due to fast chemistry of the oxy-fuel combustion. Thus, the equilibrium calculation based on Gibbs free energy minimization was guaranteed to generate the solution of the oxy-fuel combustion. The result was obtained by numerical simulation. The predicted radial temperature profiles were in good agreement with the measured results. The flame length was shorten and was intensified with the decrease of OFR because the mixture of fuel and oxidizer are fast mixed and burnt. The maximum temperature became lower as the OFR increased, as a consequence of large flame surface area.

Performance Analysis on Gas Turbine based Oxy-fuel Combustion Power Plants (가스터빈과 순산소 연소를 적용한 발전시스템의 성능해석)

  • Lee, Young-Duk;Lee, Sang-Min;Park, Jun-Hong;Yu, Sang-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3169-3174
    • /
    • 2008
  • Future power plants will be required to adopt some type of carbon capture and storage (CCS) technologies to reduce their CO2 emissions. One of distinguished CCS techniques expected to resolve the green house effect is to apply the oxy-fuel combustion technique to power plant, and a lot of research/demonstration programs have been going on in the world. In this paper, CO2-capturing power plants based on gas turbine and oxy-fuel combustion are investigated over several types of configurations. As a prior step, simulation model for 500 MW-class combined cycle power plant was set and was used as a reference case. The efficiencies of several power plants was compared and the advantages and disadvanteges was investigated.

  • PDF