• Title/Summary/Keyword: oxidized glutathione

Search Result 127, Processing Time 0.025 seconds

Effects of Adriamycin on Cardiac Ultrastructure and Glutathione-Glutathione Peroxidase System in Mouse (Adriamycin이 생쥐 심근 미세구조 및 Glutathione-Glutathione Peroxidase계에 미치는 영향)

  • Park, Won-Hark;Chung, Hyeung-Jae;Kim, Ssang-Yong;Lee, Yong-Deok;Choi, Jeung-Mog
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.99-118
    • /
    • 1989
  • The cardiotoxic effects of acute and chronic administration of adriamycin (ADR) were evaluated in A/J Swiss albino mice. In acute studies, male mice received intravenous ADR, 5mg or 15mg/kg per day for 3 or 1day and were sacrifice 12 hours later. Because the glutathione-glutathione peroxidase system is major pathway for free radical detoxication, glutathione levels and glutathione peroxidase activity was measured. In acute studies, ADR-treated mice exhibited significantly decreased levels(p<0.05) of total glutathione and unchanged levels of oxidized glutathione and percentage of oxidized glutathione. The earliest myocardial fine structural alterations included swelling and degeneration of mitochondria and dilatation of sarcoplasmic reticulum at all dosage of acute models. In chronic studies, mice received 5mg/kg ADR once a week for up to 16 weeks. Levels of total and reduced glutathione were decreased significantly(p<0.01) and oxidized glutathione and percentage of oxidized glutathione were increased significantly (p<0.05). Chronic myocardial lesions included perinuclear vacuolization, seperation of myofibrils and the fasciae adherens of intercalated disc and hypercontraction band within myocyte. Glutathione peroxidase activity reduced significantly (p<0.01) in any group of acute and chronic ADR-treated animals. Test for lipid peroxidation(malondialdehyde) was increased significantly(P<0.01). Thus, we conclude 1) ADR significantly lowers glutathione levels in heart tissue, and 2) cellular damage progress produced by alteration of this system in mouse models of ADR cardiotoxicity. These results suggest that the glutathione-glutathione peroxidase system may be involved in the modulation of ADR-induced cardiotoxicity.

  • PDF

Effects of Vitamins C and E on Hepatic Drug Metabolizing Function in Nypoxia/Reoxygenation (저산소 및 산소재도입시 vitamin C와 E가 간장 약물대사 기능에 미치는 영향)

  • 윤기욱;이상호;이선미
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.237-244
    • /
    • 2000
  • Liver isolated from 18 hours fasted rats was subjected to $N_2$hypoxia (for 45 min) followed by reoxygenation (for 30 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (pH 7.4, $37^{\circ}C$). Vitamin C (0.5 mM) and trolox C (0.5 mM), soluble vitamin E analog, were added to perfusate. Lactate dehydrogenase (LDH), total glutathione, oxidized glutathione, lipid peroxide and drug-metabolizing enzymes were measured. After hypoxia LDH significantly increased but this increase was attenuated by vitamin C and combination of vitamin C and E. Total glutathione and oxidized glutathione in perfusate markedly increased during hypoxia and this increase was inhibited by vitamins C, E and its combination. Similarly; oxidized glutathione and lipid peroxide in liver tissue increased after hypoxia and reoxygenation and this increase was inhibited by vitamin I and combination of vitamin C and E. Hepatic drug metabolizing function (phase I, II) were suppressed during hypoxia but improved during reoxygenation. While vitamins C and E only increased glucuronidation, the combination of vitamin C and E increased the oxidation, glucuronidation and sulfation. Our findings suggest that vitamins C and E synergistically ameliorates hepatocellular damage as indicated by abnormalities in drug metabolizing function during hypoxia/reoxygenation and that this protection is in major part, caused by decreased oxidative stress.

  • PDF

Effects of Powdered Siho(Bupleuri Radix) on Serum and Liver Lipid Composition and Antioxidative Capacity in Rat Fed High Oxidized Fat (시호(Bupleuri Radix)분말이 과산화지질을 급여한 흰쥐의 혈장 및 간장지질구성과 항산화능에 미치는 영향)

  • 이은주;최무영;오혜숙
    • Journal of Nutrition and Health
    • /
    • v.33 no.5
    • /
    • pp.502-506
    • /
    • 2000
  • Effects of powdered siho(bupleuri radix) on serum and liver lipid composition and antioxidative capacity were investigated in rat fed high oxidized fat. Sixty male Sprague-Dawley rats weighing 161.25$\pm$2.51g were blocked into four groups according to body weight and raised seven weeks with basal diet(normal group), basal diet and 10% oxidized fat(control group), basal diet, 10% oxidized fat and 2% powdered siho(2% powdered siho group) and basal diet, 10% oxidized fat and 3% powdered siho(3% powdered siho group). Feed intake, body weight gain and feed efficiency were not significantly different among oxidized fat diet groups. The values of total cholesterol and triglyceride in plasma and liver showed no significantly different(p>0.05) in the oxidized fat diet groups. Plasma HDL-cholesterol showed atendency to increase in powdered siho diet groups. The values of thiobarbituric acid in plasma and liver were lower in the powdered siho diet groups than control group. Plasma GOT and GPT activity showed a tendence to decrease in powdered siho groups. Liver glutathione peroxidase activity showed a tendence to increase in powdered siho diet groups. Thus, it seems that powdered siho had some antioxidative elements.

  • PDF

Effects of Bromate on the Glutathione Synthesis in Various Organs of Rats (Bromate가 흰쥐의 장기 Glutathione 함량에 미치는 영향)

  • 김나영;강혜옥;이무강;최종원
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.626-633
    • /
    • 2003
  • The effects of bromate administration on glutathione were studied in rats. The contents of glutathione in the liver and kidney were significantly decreased but the alteration was not significant in lung and blood by bromate adminstration. The decrease occurred without concomitant increases in oxidized glutathione (GSSG) or in the GSSG/GSH+GSSG ratio. The activities of $\gamma-glutamyl$ cysteine synthetase in the liver and kidney were decreased by bromate administration. $\gamma-Glutamyl$ transpeptidase activities was significantly decreased in the kidney and not significantly decreased in the lung of bromate treated-rats. These results suggest that the decreased synthesis of glutathione by bromate may be an important reason for the decreased level of glutathione in the liver and kidney, thus the decreased glutathione transport would be a factor on the changes of glutathione contents in bromate-treated rats.

Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

  • Netto, Arlindo Saran;Zanetti, Marcus Antonio;Claro, Gustavo Ribeiro Del;de Melo, Mariza Pires;Vilela, Flavio Garcia;Correa, Lisia Bertonha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.488-494
    • /
    • 2014
  • Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat.

Glutathione and Glutathione-Related Enzymes during Dictyostelium Development

  • Kim, Beom-Jun;Park, Chang-hoon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.48-48
    • /
    • 2002
  • Glutathione (GSH) is most prevalent reducing thiols in eukaryotic cells and known that participates in many cellular processes. It was found that total amount of glutathione and the ratio of reduced to oxidized glutathione during development of Dictyostelium discoideum increase at the initial stage of the aggregation of amoeba.(omitted)

  • PDF

The Study of the Anti-oxidative Effects of Polygonati Multiflori Caulis on Oxidized Brain and Liver Cells in Rats (야교등(夜交藤)이 흰쥐 뇌와 간에서의 산화 억제에 미치는 영향)

  • Lee, Han-Goo;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.25 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • Objectives : This study was purposed to the anti-oxidative effects of Polygonati Multiflori Caulis(henceforth PMC) on oxidized brain and liver cells in rats. Methods : After extraction of PMC with water, the water extract was divided into five fractions : hexane, ethyl ether, ethyl acetate, butanol and an aqueous fraction. The phenol contents of each fraction were measured. The lipid peroxidation inhibition effect were then investigated. Results : After processing PCM water and PCM fractionations on oxidized brain cells in rats, the SOD (super oxide dismutase) activity and glutathione content were increased, and the NO (nitric oxide) content was decreased. It had much higher SOD activity than liver cells in rats excluded in the n-BuOH and aqueous fractions. In case of oxidized liver cells in rats, the SOD activity and glutathione content increased, while both the NO content and the MDA (malondialdehyde) content decreased. It had much higher glutathione content than brain cells in rats in the every fractions. It had much lower MDA content than brain cells in rats in the Aqueous fractions and brain cells in rats had much lower MDA content than liver cells in rats in the total extract, n-hexane, EtOEt, EtOAc and n-BuOH fractions. Conclusions : PMC has anti-oxidative effect on oxidized liver cells and brain cells in rats, through there are differences in fraction. Additionally, Anti-oxidative effect of brain cells can be relaxed the mental nerve and it is related PMC effect.

Studies on the Causal Component of Rusty-Root on Panax ginseng I. Antioxidative Activity Oriented (적변인삼 유발 물질 구명 I. 항산화 활성을 중심으로)

  • 이성식;이명구;최광태;안영옥;권석윤;이행순;곽상수
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.113-117
    • /
    • 2000
  • To analyze the correlation between the rusty root and the antiokidative activity in ginseng (Panax ginseng C.A.Meyer) roots, the levels of antioxidative activity in various tissues of healthy and rusty roots. The superoxide dismutase activity in rusty roots (126.9 units/mg protein) was approximately 3.5 times higher than that in healthy roots. The catalase activity in rusty roots was approximately 1.6 times higher than that in healthy roots, whereas the peroxidase activity showed a slight low level in msty roots. The 1.1 diphenyl-2-picryl-hydrazyl(DPPH) free radical scavenging activity in rusty roots was approximately 2.0 times higher than that in healthy roots. The total ascorbate content in healthy roots was 166~240 $\mu\textrm{g}$/g fr. wt. depending on the tissues. Interestingly, the oxidized dehydroascorbate (DHA) content occupied more than 80% in total ascorbate content. The total ascorbate content in rusty roots was a similar level with healthy roots, but the reduced ascorbate content was 3.5~7.5 times higher than that of the healthy roots. The total glutathione content of the epidermis, cortex and stele tissues in 겨sty roots was 7.3, 4.8, 1.2 times higher than the healthy tissues, respectively. The ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG) showed a similar fluctuation of total glutathione content in 겨sty roots. These results indicate that the high antioxidative activity in rusty roots may involve in overcoming the oxidative stress derived from environmental stresses.

  • PDF

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

Effect of Trolox C on Hypoxia/Reoxygenation-Induced Injury in Isolated Perfused Rat Liver

  • Lee, Sun-Mee;Cho, Tai-Soon
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.471-475
    • /
    • 1997
  • Livers isolated from 18 hours fasted rats were subjected to N$_{2}$ hypoxia (for 45 min) followed by reoxygenation (for 45 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (KHBB, pH 7.4). Lactate and alanine were added as gluconeogenic and ureagenic substrates and Trolox C was also added to perfusate. Oxygen consumption, lactate dehydrogenase (LDH), alanine transaminase (ALT), total glutathione, oxidized glutathione, bile flow, glucose and urea were measured. After hypoxia oxygen consumption significantly dropped but Trolox C had no influence on this decrease. ALT and LDH were significantly increased by hypoxia/reoxygenation. This increase was markedly attenuated in the presence of Trolox C. The total glutathione and oxidized glutathione efflux increased following hypoxia, which were prevented by the treatment of Trolox C. Bile flow rate decreased following hypoxia/reoxygenation but did not continue to decrease in the reoxygenation phase by Trolox C. Following hypoxia/reoxygenation glucose and urea releases decreased. Trolox C had no influence on inhibition of glucose and urea production. These results suggest that Trolox C protected the liver cells against hypoxia/reoxygenation injury, yielding further evidence for a causative role of oxidative stress in this model.

  • PDF