• 제목/요약/키워드: oxidized cholesterol

검색결과 80건 처리시간 0.027초

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

폐경 후 여성에서 이소플라본과 감마 리놀렌산의 보충 섭취가 혈중 지질 농도 및 갱년기 증상에 미치는 영향 (The Effect of Isoflavone and Gamma-linolenic Acid Supplementation on Serum Lipids and Menopausal Symptoms in Postmenopausal Women)

  • 곽정현;김지영;김혜진;신동혁;이종호
    • Journal of Nutrition and Health
    • /
    • 제43권2호
    • /
    • pp.123-131
    • /
    • 2010
  • 본 연구 결과를 요약하면 다음과 같다. 1) 산화 LDL 농도는 이소플라본 및 감마 리놀렌산 보충군에서 유의적으로 감소 (p = 0.006), 플라시보군에서 유의적인 변화 없었음. 두 군간 비교에서 유의적인 차이가 있었음 (p = 0.011). 2) 혈청에서의 중성지방, 총 콜레스테롤, LDL 콜레스테롤, HDL 콜레스테롤, 아포지단백 A1, B 등의 농도는 두 군에서 모두 유의적인 차이가 없었음. 3) LDL particle size와 Paraoxonase 활성도는 두 군에서 모두 유의적인 차이가 없었음. 지질과산화지표인 혈장 MDA 농도는 두 군간 변화량 비교에서만 유의적인 차이가 있었음 (p = 0.010). 4) 갱년기 증상 지표인 Modified kupperman index (KI)는 이소플라본 및 감마 리놀렌산 보충군과 플라시보군에서 모두 유의적으로 감소하였음 (p < 0.001). KI 수치의 군간 비교에서는 유의적인 차이가 없었음. 이소플라본 및 감마 리놀렌산 복합제재를 12주간 섭취하였을 때 이소플라본 및 감마 리놀렌산 보충군에서 산화 LDL 농도가 유의적인 감소하였고, 두 군간의 비교시 MDA 농도 변화량의 유의적인 차이를 확인하였다. 이소플라본 및 감마리놀렌산 복합제재 섭취는 산화적 스트레스로부터 체내 LDL-콜레스테롤의 산화를 예방하는데 도움을 줄 수 있을 것으로 사료된다. 우리나라에서 폐경 후 여성을 대상으로 이소플라본 및 감마리놀렌산 복합 제재 섭취와 관련 된 연구는 매우 미흡한 실정임으로 복합제재의 용량 설정을 세분화 하고 복용기간을 연장한 후속 연구가 필요할 것으로 사료된다.

The effects of physical training on antioxidative status under exercise-induced oxidative stress

  • Choi, Eun-Young;Cho, Youn-Ok
    • Nutrition Research and Practice
    • /
    • 제1권1호
    • /
    • pp.14-18
    • /
    • 2007
  • This study investigated the effect of physical training and oxidative stress on the anti oxidative activity and on plasma lipid profile. Forty eight rats were given either a physical training or no training for 4 weeks and were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The antioxidative activity was evaluated with the activities of catalase in plasma and superoxide dismutase (SOD), the ratio of reduced glutathione/ oxidized glutathione (GSH/GSSG) and the level of malondialdehyde (MDA) in liver. The plasma concentrations of triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C)) were also compared. Compared to those of non-training group. catalase activities of training group were lower before exercise but higher during and after exercise. SOD activities were higher regardless of exercise. GSH/GSSG ratio was higher before exercise but was not significantly different during exercise and even lower after exercise. There were no differences between non-training group and training group in MDA levels regardless of exercise. Compared to those of non-training group, atherosclerotic index of training group was lower after exercise and there were no significant differences before and during exercise. There were no differences between non-training group and training group in HDL-C regardless of exercise. These results suggest that moderate physical training can activate antioxidant defenses and decrease the atherosclerotic index and this beneficial effect is evident under exercise-induced oxidative stress.

Glucocorticoids Impair the 7α-Hydroxycholesterol-Enhanced Innate Immune Response

  • Yonghae Son;Bo-Young Kim;Miran Kim;Jaesung Kim;Ryuk Jun Kwon;Koanhoi Kim
    • IMMUNE NETWORK
    • /
    • 제23권5호
    • /
    • pp.40.1-40.14
    • /
    • 2023
  • Glucocorticoids suppress the vascular inflammation that occurs under hypercholesterolemia, as demonstrated in an animal model fed a high-cholesterol diet. However, the molecular mechanisms underlying these beneficial effects remain poorly understood. Because cholesterol is oxidized to form cholesterol oxides (oxysterols) that are capable of inducing inflammation, we investigated whether glucocorticoids affect the immune responses evoked by 7α-hydroxycholesterol (7αOHChol). The treatment of human THP-1 monocytic cells with dexamethasone (Dex) and prednisolone (Pdn) downregulated the expression of pattern recognition receptors (PRRs), such as TLR6 and CD14, and diminished 7αOHChol-enhanced response to FSL-1, a TLR2/6 ligand, and lipopolysaccharide, which interacts with CD14 to initiate immune responses, as determined by the reduced secretion of IL-23 and CCL2, respectively. Glucocorticoids weakened the 7αOHChol-induced production of CCL2 and CCR5 ligands, which was accompanied by decreased migration of monocytic cells and CCR5-expressing Jurkat T cells. Treatment with Dex or Pdn also reduced the phosphorylation of the Akt-1 Src, ERK1/2, and p65 subunits. These results indicate that both Dex and Pdn impair the expression of PRRs and their downstream products, chemokine production, and phosphorylation of signaling molecules. Collectively, glucocorticoids suppress the innate immune response and activation of monocytic cells to an inflammatory phenotype enhanced or induced by 7αOHChol, which may contribute to the anti-inflammatory effects in hypercholesterolemic conditions.

  • PDF

뇌조직의 산화적 스트레스 및 세포막 유동성에 미치는 실크 피브로인의 영향 (Effects of Silk Fibron on Oxidative Stress and Membrane Fluidity in Brain of SD Rats)

  • 최진호;김대익;박수현;김정민;이종수;이광길;여주홍;이용우
    • 생명과학회지
    • /
    • 제10권5호
    • /
    • pp.511-518
    • /
    • 2000
  • This study was designed to investigate the effects of silk fibroin powder (SFP : Mw 500) on oxidative stress and membrane fluidity in brain membranes of rats. Sprague-Dawley (SD) male rats (160$\pm$10 g) were fed basic diet (control group), and experimental diets (SFP-2.5 and SFP-5.0 groups) added 2.5 and 5.0 g/kg BW/day for 6 weeks. Cholesterol level was significantly decreased about 8.0% in brain microsomes of SFP-5.0 group only compared with control group. Membrane fluidities were significantly increased (12.9% and 15.2%, respectively) in brain microsomes of SFP-2.5 and SFP-5.0 groups, but significant difference between in brain mitochondria of these two groups could be not obtained. Basal oxygen radicals (BOR) in brain mitochondria and microsomes were significantly ingibited (10.4%, and 24.0%, 7.9% and 14.9%, respectively) by SFP-2.5 and SFP-5.0 groups compared with control group. Induced oxygen radicals (IOR) in brain mitochondria and microsomes were significantly inhibited (11.8% and 14.1%, respectively) by SFP-5.0 groups compared with control group compared with control group. Lipid peroxide (LPO) levels were dose-dependently decreased (12.9% and 21.9%, 13.2% and 22.5%, respectively) in brain mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group. Oxidized protein (OP) levels were significantly decreased (15.7% and 17.1%, 16.7% and 15.7%, respectively) in brain mitochondria and microsomes of SFP-2.5 and SFP-2.5 and SFP-5.0 groups compared with control group. These results suggest that administration of SFP may play an effective role in a attenuating a oxidative stress and increasing a membrane fluidity in brain membranes.

  • PDF

동물실험을 통한 솔잎(松葉) 유효성분의 항노화효과 구명 및 구조 해명 I. 간장의 세포막 유동성과 산화적 스트레스에 미치는 솔잎 추출물의 영향 (Investigation of Anti-aging Effect and Determination of Chemical Structures of Pine Needle Extract (PNE) through the Animal Experiments I. Effects of PNE on Membrane Fluidity and Oxidative Stress in Liver of SD Rats)

  • 최진호;김대익;박수현;김동우;이종수;김현숙
    • 생명과학회지
    • /
    • 제9권4호
    • /
    • pp.473-480
    • /
    • 1999
  • This study was designed to investigate the effects of pine (Pinus densiflora Sieb et Zucc) needle extract (PNE) on membrane fluidity and oxidative stress in liver membranes of Sprague-Dawley (SD) rats as a study on investigation of anti-aging effect and determination of chemical structures of PNE through the animal experiments. Male SD rats were fed basic diets (control group) and experimental diets (0.5% and 1.0%-PNE group) for 6 weeks. Administrations of 0.5% and 1.0%-PNE resulted in a marked decreases (15∼25% and 23∼26%, respectively) in cholesterol accumulations of liver mitochondria and microsomes compared with control group. Membrane fluidities were significantly increased (15∼25%) in liver microsomes of 0.5% and 1.0%-PNE groups compared with control group. Formations of basal and induced oxygen radicals (BOR and IOR) in liver mitochondria were significantly inhibited (11∼12% and 10∼15%, respectively) by administrations of 0.5% and 1.0%-PNE compared with control group. Lipid peroxide (LPO) levels were remarkbly decreased about 20% in liver mitochondria and microsomes of 0.5% and 1.0%-PNE groups compared with control group. Oxidized protein levels calculated with carbonyl group were significantly decreased about 15% in liver mitochondria of 1.0%-PNE group compared with control group. These results suggest that PNE may play a effective role in a attenuating a oxidative stress and increasing a membrane fluidity.

  • PDF

Rat 간장의 산화적 스트레스 및 세포막 유동성에 미치는 실크 피브로인의 영향 (Effects of Silk Fibroin in Oxdative Stress and Membrane Fluidity in the Liver of SD Rats)

  • 최진호;김대익;박수현;김동우;이광길;여주홍;김정민;이용우
    • 한국잠사곤충학회지
    • /
    • 제42권1호
    • /
    • pp.58-64
    • /
    • 2000
  • This study was designed to investigate the effects of silk fibroin powder (Mw 500) on oxidative stress and membrane fluidity in liver membranes of rats. Sprague-Dawley (SD) male rats (160$\pm$10g) were fed basic diet (control group), and experimental diets (SEP-2.5 and SFP-5.0 groups) added 2.5 and 5.0 g/kg BW/day for 6 weeks. Cholesterol levels resulted in a significant decrease (12.1% and 9.0%, respectively) in the liver mitochondria and microsomes of SEP-5.0 group compared with control group. Membrane fluidity as significantly increased (16.1% and 16.5%, 5.8% and 17.4%) in the liver mitochondria and microsomes were significantly inhibited (16.1% and 18.3%, 8.1% and 15.1%, respectively) at the SFP-2.5 and SEP-5.0 groups compared with control group. Induced oxygen radicals (BOR) in liver mitochondria and microsomes were significantly inhibited (16.1% and 18.3%, 8.1% and 15.1%, respectively) at the SFP-2.5 and SEP-5.0 groups compared with control group. Induced oxygen radicals (IOR) in liver microsomes were significantly inhibited (17.0% and 26.6%, respectively) at the SFP-2.5 and SFP-5.0 groups compared with control group, but IOR in liver mitochondria was significantly inhibited about 12.3% at the SWP-400 group only compared with control group. Lipid peroxide (LPO) levels were significantly decreased (8.3% and 18.0%, 13.4% and 18.4%, respectively) in the liver mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group. Oxidized protein (OP) levels were dose-dependently decreased (5.4% and 11.6%, 19.0% and 24.4%, respaectively) in the iver mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group. These results suggest that administration of SFP may play an effective role in attenuating an oxidative stress and increasing a membrane fluidity in liver membranes.

  • PDF

뇌조직의 산화적 스트레스 및 세포막 유동성에 미치는 누에분말의 영향 (Effects of Silkworm(Bombyx mori L.) Power on Oxidative Stress and Membrane Fluidity in Brain of SD Rats)

  • 최진호;김대익;박수현;김정민;조원기;이희삼;류강선
    • 생명과학회지
    • /
    • 제11권2호
    • /
    • pp.103-110
    • /
    • 2001
  • This study was designed to investigate the effects of silkworm(Bombyx moril L.) powder on oxidative stress and membrane fluidity in brain membranes of rats. Sprague-Dawley(SD) male rats(160$\pm$10 g) were fed basic diet(control group), and experimental diets(SWP-200 and SWP-400 groups) added 200 and 400mg/kg BW/day for 6 weeks. There were no significant differences in cholesterol levels of brain memberanes by administration of silkworm powder (SWP). Membrane fluidities were significantly increased(21.5% and 30.8%, respectively) in brain mitochondria of SWP-200 and SWP-400 groups compared with control group, but significant difference between brain microsomes could not obtained. Basal oxygen radicals (BORs) in brain mitochondria and mircrosomes were significantly inhibited(8.5% and 16.5%, 16.8%and 24.8%, respectively) by SWP-200 and SEP-400 groups compared with control group. Induced oxygen radicals(IORs) in brain mitochondria were significantly inhibited(16.6% and 21.4%, respectively)by sWP-200 and SWP-400 groups compared with control group, but IOR in brain microsome were significantly inhibited about 16.0% by SWP-400 groups only compared with control group. Lipid peroxide(LPO) levels were significantly decreaed(14.8%and 22.4%, respectively) in brain mitochondria of SWP-200 and SWP-400 groups compared with control group, but LPO level was significantly decreased about 16.0% in brain microsome of SWP-400 group only. Oxidized protein(OP) levels were remarkably decreased(about 14.8% and 16.5%, respectively) in brain mitochondria of SWP-200 and SWP-400 groups, but OP level was significantly decreased about 13.0% in brain microsome of SWP-400 group only compared with control group, Theses results suggest that administration of in brain microsome of SWP-400 group only compared with control group. These results suggest that administration of SWP may play effective role in attenuating an oxidative stress and increasing a membrane fluidity in brain membranes.

  • PDF

제2형 당뇨병 환자에게 엽산과 아스코르브산 보충이 혈장 호모시스테인 농도와 산화 스트레스에 미치는 영향 (Effects of Folic Acid and Ascorbate Supplementation on Plasma Homocysteine and Oxidative Stress in Patients with Type 2 Diabetes Mellitus)

  • 황미리;소주련;임현숙
    • Journal of Nutrition and Health
    • /
    • 제42권2호
    • /
    • pp.107-118
    • /
    • 2009
  • In patients with type 2 diabetes, oxidative stress could be increased by their metabolic changes. Elevated plasma homocysteine is considered as one of markers of enhanced oxidative stress. Due to oxidative stress, some complications like cardiovascular or renal diseases may develop in type 2 diabetes patients. Plasma homocysteine concentration may be increased if folate status were inadequate. Protective effects against oxidative stress may be diminished if the status of anti-oxidative nutrient as vitamin C was poor. It is, therefore, important to maintain adequate status of folate and vitamin C in type 2 diabetes patients. Thus, this study was performed to determine the effects of supplementation of folate and/or ascorbate on blood glycated hemoglobin ($HbA_{1c}$) level, serum concentrations of homocysteine and cholesterol, plasma oxidized low density-lipoprotein (LDL), concentration and plasma glutathione peroxidase (GSH-Px) activity in the patients with type 2 diabetes. A total of 92 type 2 diabetes patients participated voluntarily with written consents. They were divided into one of the four experimental groups; Control (C), Folate-supplemented (F), Ascorbate-supplemented (A), and Folate plus ascorbate-supplemented (FA). The subjects in C were taken placebo, those in F were supplemented 1 mg of folate, those in A received 1,000 mg of ascorbate, and those in FA were given 1 mg of folate plus 1,000 mg of ascorbate daily for 4 weeks. Supplementation of folate or ascorbate resulted to increase serum folate level or plasma ascorbate concentration apparently, respectively. Folate supplementation not ascorbate seemed to decrease plasma concentrations of homocysteine and oxidized LDL and reduce plasma GSH-Px activity. There might not be synergic effect of the supplementation of folate plus ascorbate. The results indicate that oxidative stress in the patients with type 2 diabetes may lower mainly by folate supplementation.

뇌조직의 산화적 스트레스 및 세포막 유동성에 미치는 뽕(Morus alba L.) 잎 추출물의 영향 (Effects of Mulberry(Morus alba L.) Leaf Extract on Oxidative Stress and Membrane Fluidity in Brain of SD Rats)

  • 최진호;김대익;박수현;김정민;백영호;이희삼;류강선
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.354-361
    • /
    • 2000
  • The effect of mulberry (Morus alba L.) leaf extract(MLE) on oxidative stress and membrane fluidity in brain membranes of SD rats fed with 100 and 300 mg/kg BW/day were carried out for 6 weeks. Cholesterol accumulations resulted in a consistent decreases (4.6% and 5.6%, respectively) in brain mitochondria and microsomes of MLE-300 group compared with control group. Membrane fluidities were dose-dependently increased (2.2% and 5.1%, 5.0% and 15.2%) in brain mitochondria and microsomes of MLE-100 and MLE-300 groups compared with control group. Basal oxygen radicals(BORs) in brain mitochondria and microsomes were significantly inhibited (15.7% and 25.1%, 9.0% and 12.4%, respectively) by MLE-100 and MLE-300 groups compared with control group. Induced oxygen radicals(IORs) in brain mitochondria and microsomes were significantly inhibited (8.9% and 13.1%, 16.5% and 23.2%, respectively) by MLE-100 and MLE-300 groups compared with control group. Lipid peroxide (LPO) levels were significantly decreased (8.5% and 18.1%, 7.6% and 12.3%) in brain mitochondria and microsomes of MLE-100 and MLE-300 groups compared with control group. Oxidized protein (OP) levels were dose-dependently decreased (4.3% and 14.2%, 10.0% and 10.9%, respectively) in brain microsomes of MLE-100 and MLE-300 groups compared with control group. These results suggest that MLE may play an effective role in an attenuating an oxidative stress and increasing a membrane fluidity in brain membranes.

  • PDF