• Title/Summary/Keyword: oxide salt

Search Result 296, Processing Time 0.022 seconds

Anti-inflammatory Effect of Imyosan Extract is more potent than that of its Component Herb Extracts in Murine Macrophages (마우스 대식세포인 RAW 264.7에 대한 이묘산(二妙散)의 메탄올 추출물의 항염증 효과)

  • Yun, Hyun-Jeong;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.163-173
    • /
    • 2008
  • Objectives : Imyosan (IMS), a drug preparation comprised of Phellodendri Cortex (PC) and Atractylodis Rhizoma (AR), is commonly used as a traditional herbal medicine in Korea and China for the treatment of various inflammatory diseases. However, little is known about the effect of IMS and its component herbs on inflammatory mediators in RAW 264.7 cells. Therefore, in this study, methanol extracts of IMS and its component herbs were examined to determine if they inhibited inflammatory effects in RAW 264.7 cells. Methods : Cytotoxic activity of IJHT and its components on RAW 264.7 cells was using 5-(3-carboxymethoxyphenyl)-2H-tetrazolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines were measured by ELISA kit. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were detected by western blot. Results : Methanol extract of IMS and its component herbs were significantly reduced iNOS and COX-2 expression as well as NO, PGE2, $IL-1{\beta}$ and IL-6 production in RAW 264.7 cells. Conclusions : The results of this study indicated that the anti-inflammatory effect of Imyosan extract is more potent than that of extracts of its component herbs in macrophages.

  • PDF

Corrosion of Fe-Cr Steels at 600-800℃ in NaCl Salts

  • Lee, Dong Bok;Kim, Min Jung;Yadav, Poonam;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.354-359
    • /
    • 2018
  • NaCl-induced hot corrosion behavior of ASTM T22 (Fe-2.25Cr-1Mo), T91 (Fe-9Cr-1Mo), T92 (Fe-9Cr-1.8W-0.5Mo), 347HFG (Fe-18-Cr-11Ni), and 310H (Fe-25Cr-19Ni) steels was studied after spraying NaCl on the surface. During corrosion at $600-800^{\circ}C$ for 50-100 h, thick, non-adherent, fragile, somewhat porous oxide scales formed. All the alloys corroded fast with large weight gains owing to fast scaling and destruction of protective oxide scales. Corrosion rates increased progressively as the corrosion temperature and time increased. Corrosion resistance increased in the order of T22, T91, T92, 347HFG, and 310H, suggesting that the alloying elements of Cr, Ni, and W beneficially improved the corrosion resistance of steels. Basically, Fe oxidized to $Fe_2O_3$, and Cr oxidized to $Cr_2O_3$, some of which further reacted with FeO to form $FeCr_2O_4$ or with NiO to form $NiCr_2O_4$.

Electrolyte Temperature Dependence on the Properties of Plasma Anodized Oxide Films Formed on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.288-296
    • /
    • 2019
  • The passivation of AZ91D Mg alloys through plasma anodization depends on several process parameters, such as power mode and electrolyte composition. In this work, we study the dependence of the thickness, composition, pore formation, surface roughness, and corrosion resistance of formed films on the electrolyte temperature at which anodization is performed. The higher the electrolyte temperature, the lower is the surface roughness, the smaller is the oxide thickness, and the better is the corrosion resistance. More specifically, as the electrolyte temperature increases from 10 to $50^{\circ}C$, the surface roughness (Ra) decreases from 0.7 to $0.15{\mu}m$ and the corrosion resistance increases from 3.5 to 9 in terms of rating number in a salt spray test. The temperature increase from 10 to $50^{\circ}C$ also causes an increase in magnesium content in the film from 25 to 63 wt% and a decrease in oxygen from 66 to 21 wt%, indicating dehydration of the film.

Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation (플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향)

  • Namgung, Seung;Ko, Young Gun;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

Controlling interlayer spacing of GO membranes via the insertion of GN for high separation performance

  • Xuan Liu;Zhu Zhou;Hengzhang Dai;Kuang Ma;Yafei Zhang;Bin Li
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Graphene oxide (GO) membranes have attracted extensive attention in water treatment and related fields. However, GO films are unstable and have low permeability, which have hindered their further development. In this paper, a simple and effective method was used in which GO and single-layer graphene (GN) were mixed, and the layer spacing was effectively controlled by accurately controlling the ratio of GO to GN. GO-GN composite membranes have excellent stability, salt rejection (95.4%), and water flux (26 L m-2 h-1 bar-1). This unique design structure can be used for precise and effective regulation of the layer spacing in GO, improving the rejection rate, and increasing water flux via the enhancement of low-friction capillary action. The rational development and use of this unique composite membrane provides a reference for the water treatment field.

Screening of Anti-inflammatory Effect of Halophyte Extracts

  • Jae-Bin Seo;Young-Jae Song;Sa-Haeng Kang;Se-Woong-Ko;Dong-Keun Kim;Tae-Hyun Kim;Jeong-Hyang Park;Ju-Ryun Soh;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.79-79
    • /
    • 2020
  • Halophyte is a plant that has evolved to grow well in salty places, and is mainly distributed in coastal wetlands, sand dunes, salt fields, and reclaimed lands in tidal flats and river estuaries. Because it grows in the soil where seawater enters and exits, it is very abound in natural minerals and produces certain metabolites to survive sustainably in the surrounding environment. In this study, anti-inflammatory studies were conducted using 15 kinds of halophyte to secure data on halophytes of infinite value as functional materials. The aim of this study was to select a group of halophytes that regulate iNOS expression, which is involved in the secretion of inflammatory cytokines and nitric oxide production in LPS-induced macrophages. Among the 15 species of halophyte, except for Triglochin maritimum, Suaeda japonica, and Carex pumila, NO production was reduced in 12 species of halophytes, and 7 species of halophyte (Suaeda asparagoides, Artemisia fukudo, Spergularia marina, Aster tripolium, Suaeda australis, Atriplex subcordata, Calystegia soldanella) significantly decreased the expression levels of TNF-α and IL-1β.

  • PDF

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • Park Sung-Bin;Seo Chung-seok;Kang Dae-Seung;Kwon Seon-Gil;Park Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The electrolytic reduction of uranium oxide in a LiCl-Li$_{2}$O molten salt system has been studied in a 10 g U$_{3}$O$_{8}$ /batch-scale experimental apparatus with an integrated cathode assembly at 650$^{\circ}C$. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt$\%$ Li$_{2}$O system and the U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  • PDF

Feasibility Study on Vitrification for Rare Earth Wastes of PyroGreen Process (파이로그린공정 희토류폐기물 유리화 타당성 연구)

  • Kim, Cheon-Woo;Lee, Byeong Gwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The rare earth oxide wastes consisting of major 8 nuclides Y, La, Ce, Pr, Nd, Sm, Eu and Gd, are generated during the salt waste treatment of PyroGreen process. The final form of the rare earth is generated as the oxide state. In this study, six candidate glasses were developed to evaluate the feasibility for vitrifying the rare earth oxide wastes within the borosilicate glass system. The solubilities of the mixture of the rare earth oxide waste showed less than 25wt% at $1,200^{\circ}C$, less than 30wt% at $1,300^{\circ}C$, respectively. It means that solubility is increased with the temperature increment. The liquidus temperature of the homogeneous glass with 20wt% waste loading was determined as less than $950^{\circ}C$. In more than solubility of rare earth oxides glass, formation of rare earth-oxide-silicate crystal in glass-ceramic occurred as the secondary phase. As their viscosity at melting temperature $1,200{\sim}1,300^{\circ}C$ was less than 100 poise, electrical conductivity was higher than 1 S/cm, 20~25wt% waste loading glasses with good surface homogeneity are judged to have good operability in cold crucible induction melter. Other physicochemical properties of the developed glasses are going to be experimented in the future.

Influence of Manufacturing Conditions on the Reflectance and Life Time of the Gold Protected IR Mirror (금 증착 적외선 반사판의 반사율 및 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.201-207
    • /
    • 2018
  • Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, $Al_2O_3$ coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with $Al_2O_3$ as the anti-oxide layer, coated Cr as the adhesion layer, and coated $MgF_2$ as the protection layer.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.