• Title/Summary/Keyword: oxidative stress response

Search Result 433, Processing Time 0.032 seconds

2020 Dietary Reference Intakes for Koreans: vitamin C (2020 한국인 영양소 섭취기준: 비타민 C)

  • Park, Sunmin
    • Journal of Nutrition and Health
    • /
    • v.55 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Vitamin C is an important physiological antioxidant which neutralizes reactive oxygen species (ROS) and reduces the oxidative stress in the body. Although it has been associated with various diseases, few studies have reported the dose-response relationship between vitamin C intake, storage and functions in the body, including its antioxidant function. The criteria to establish the Dietary Reference Intakes for Koreans (KDRIs) for vitamin C were based on the changes in plasma concentrations and saturation of leukocytes according to intake levels and the effects on antioxidant capacity and risk of metabolic diseases. When establishing the 2020 vitamin C KDRI, while there was no change in the criteria from those of 2015, the reference values were recalculated and revised to reflect changes such as the new standard weight by age. As the number of people consuming dietary supplements has increased over the last decade, only about 10% of adults consume less than the average total vitamin C, but the proportion of adolescents and elderly who consume less than the average is high. On the other hand, as the intake of vitamin C supplements increases, the proportion of people consuming excessive vitamin C is also increasing. There is a body of opinion that it is necessary to establish a vitamin C KDRI for smokers or people with chronic diseases such as the metabolic syndrome, but these standards have not been established due to the lack of supporting scientific evidence. As a result, studies to establish vitamin C KDRI for Korean smokers and patients with the metabolic syndrome, as well as studies on the excessive intake of vitamin C due to supplementation and interactions with other nutrients, are needed.

Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

  • Jian Sun;Jinjin Pan;Qinlong Liu;Jizhong Cheng;Qing Tang;Yuke Ji;Ke Cheng;Rui wang;Liang Liu;Dingyou Wang;Na Wu;Xu Zheng;Junxia Li;Xueyan Zhang;Zhilong Zhu;Yanchun Ding;Feng Zheng;Jia Li;Ying Zhang;Yuhui Yuan
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.97-107
    • /
    • 2023
  • Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.

Inhibition of Glycation End Products Formation and Antioxidant Activities of Ilex paraguariensis: comparative study of fruit and leaves extracts

  • Laura Cogoi;Carla Marrassini;Elina Malen Saint Martin;Maria Rosario Alonso;Rosana Filip;Claudia Anesini
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.338-347
    • /
    • 2023
  • Objectives: Ilex paraguariensis (Aquifoleaceae) is cultivated to produce "yerba mate". Due to its nutritional, energizing, hypoglycemic and antioxidant effects, it is used in the elaboration of food, pharmaceuticals, and cosmetics. The oxidative stress related to protein glycation and production of advanced glycation end products (AGEs) leads to the development of several diseases. The objective of this work was to compare the antioxidant and anti-AGEs activity of a decoction of fruits (F) and leaves (L). Methods: The antioxidant activity was assayed by the DPPH assay and the inhibition of egg yolk lipid peroxidation (ILP), and anti-AGEs activity, through the inhibition of the formation of fructosamine (IF), β-amyloid (Iβ), protein carbonylation (IC) and AGEs (IA). Polyphenols were quantified by HPLC. Results: Maximum response ± SEM: For F 0.01 ㎍/mL: IF = 42 ± 4%, IC = 17 ± 2% and for 10 ㎍/mL: IA = 38 ± 4%, Iβ = 67 ± 7%. For L 0.1 ㎍/mL: IF = 35 ± 2%, IC = 19 ± 2% and for 100 ㎍/mL: IA = 26 ± 3%, Iβ = 63.04 ± 2%. The DPPH IC50 = 134.8 ± 14 ㎍/mL for F and 34.67 ± 3 ㎍/mL for L. The ILP IC50 = 512.86 ± 50 ㎍/mL for F and 154.8 ± 15 ㎍/mL for L. By HPLC L presented the highest amounts of flavonoids and caffeoylquinic acids. F and L showed strong anti-AGEs activity, affecting the early stages of glycation at low concentrations and the late stages of glycation at high concentrations. The highest activity for both F and L was seen in the IF and Iβ. F presented the highest anti-AGEs potency. L presented the highest antioxidant potency, which was related to the highest content of polyphenols. Conclusion: The fruits of I. paraguariensis could be a source of antioxidant and anti-AGEs compounds to be used with medicinal purposes or as functional food.

Application of Weed Species as the Diagnostic Indicator Plants of Environmental Pollution (환경오염(環境汚染) 진단(診斷) 지표식물(指標植物)로서 잡초종(雜草種)의 활용(活用)에 관(關)한 연구(硏究))

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.46-69
    • /
    • 1996
  • The studies were conducted to obtain the basic information of the effects of pollutants on plant species and to select the plant species showing specific responses to the pollutants. For these purposes, paraquat, ammonium, and cadmium as a source of oxidative stress, nitrogen toxicity, and heavy metal toxicity respectively were treated to the plant species. Among the tested plants, Lamiaceae, Brassicaceae, and Caryophyllaceae were tolerant to paraquat, whereas Poaceae and Asteraceae were sensitive. Especially Mosla dianthera of Lamiaceae, Hemistepta lyrata and Aster pilosus of Asteraceae, and Paspalum thunbergii of Poaceae showed higher tolerance than others. Paraquat resistance was related with life style, overwintering capacity, so perennial and biennial species showed higher tolerance than annual species. In response to ammonium, Poaceae showed higher resistance while Fabaceae and Caryophyllaceae showed sensitiveness. Weed species having tolerance to ammonium were Echinochloa crus-galli var. praticola, Panicum dichotomiflorum, Setaria glauca, Chenopodium album, and Solanum nigrum, while Mosla dianthera, Arenaria serpyllifolia and Perilla frutescens var. japonica showed sensitiveness. In the response of plant species to cadmium, Digitaria sanguinalis, Amaranthus lividus showed higher resistance, whereas Galinsoga parviflora, Plantago asiatica, Ambrosia trifida, and Paspalum thunbergii showed sensitiveness. The injured degree on germination stage by pollutants did not related with injured degree on matured stage. During germination, the root elongation was more sensitive than shoot elongation by pollutants, paraquat, ammonium, and cadmium.

  • PDF

Comparison of Inflammatory Response and Myocardial injury Between Normoxic and Hyperoxic Condition during Cardiopulmonary Bypass (체외순환 시 정상 산소분압과 고 산소분압의 염증반응 및 심근손상에 관한 비교연구)

  • 김기봉;최석철;최국렬;정석목;최강주;김양원;김병훈;이양행;조광현
    • Journal of Chest Surgery
    • /
    • v.34 no.7
    • /
    • pp.524-533
    • /
    • 2001
  • Background: Hyperoxemic cardiopulmonary bypass (CPB) has been recognized as a safe technique and is widely used in cardiac surgery. However, hyperoxemic CPB may produce higher toxic oxygen species and cause more severe oxidative stress and ischemia/reperfusion injury than normoxemic CPB. This study was undertaken to compare inflammatory responses and myocardial injury between normoxemic and hyperoxemic CPB and to examine the beneficial effect of normoxemic CPB. Material and method: Thirty adult patients scheduled for elective cardiac surgery were randomly divided into normoxic group (n=15), who received normoxemic CPB (about Pa $O_{2}$ 120 mmHg), and hyperoxic group (n=15), who received hyperoxemic CPB (about Pa $O_{2}$ 400 mmHg). Myeloperoxidase (MPO), malondialdehyde (MDA), adenosine monophosphate (AMP), and troponin-T (TnT) concentrations in coronary sinus blood were determined at pre- and post-CPB. Total leukocyte and neutrophil counts in arterial blood were measured at the before, during, and after CPB. Lactate concentration in mixed venous blood was analyzed during CPB, and cardiac index (Cl) and pulmonary vascular

  • PDF

Antihyperglycemic of Gleditschiae Spina Extracts in Streptozotocin-Nicotinamide Induced Type 2 Diabetic Rats (Streptozotocin-Nicotinamide로 유도된 제2형 당뇨모델 쥐에서 조각자(Gleditschiae Spina) 추출물의 항당뇨효과)

  • Park, Jae-Hee;Chu, Won-Mi;Lee, Jeung-Min;Park, Hae-Ryong;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.321-326
    • /
    • 2011
  • The aim of the present study was to investigate antihyperglycemic effect of Gleditschiae Spina (GS) in streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic rats. The rats were divided into four groups: normal control (NC), diabetic control (DC), diabetic rats supplemented with acarbose (AC, 4 mg/kg), and with GS ethanol extracts (GSE, 50 mg/kg). Weekly fasting blood glucose (FBG) for 10 weeks and oral glucose tolerance test (OGTT) at 10th week were monitored using glucose oxidase-peroxidase reactive strips. The FBG level was significantly reduced in AC group after 8 weeks and in GSE group at the end of period. The AUCs for the glucose response from OGTT and blood glucose level after sacrifice were significantly lower in the AC and GSE groups than the DC group. GSE supplementation significantly increased plasma total radical-trapping antioxidant potential (TRAP) in STZ-NA-induced diabetic rats, compared with DC group. The present study indicates that GSE could ameliorate type 2 diabetes and be comparable to acarbose, a standard hypoglycemic drug. Also, we suggest that GSE may possess antioxidant activity against the STZ-NA-induced oxidative stress.

Comparative Analysis of Growth and Antioxidant Enzyme Activities from Two Chrysanthemum Varieties, 'ARTI-purple' and 'ARTI-queen' by Chronic Irradiation of Gamma-ray (감마선 완조사에 따른 국화 'ARTI-purple'과 'ARTI-queen'의 생육 및 항산화 효소 활성 비교 분석)

  • Sung, Sang Yeop;Lee, Yu-Mi;Kim, Sang Hoon;Ha, Bo-Geun;Kang, Si-Yong;Kim, Jin-Baek;Kim, Dong Sub
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2013
  • Two chrysanthemum varieties, 'ARTI-purple' and 'ARTI-queen', were chronically irradiated with doses of 30, 50, 70, and 100 Gy for four weeks in gamma-phytotron, a long term irradiation facility. We investigated the growth, responses of antioxidant enzymes (ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD; superoxidase dismutase, SOD) and malondialdehyde (MDA) contents under different doses of chronic-irradiation. The five plant growth measurements including plant height, number of leaves, internode length, stalk diameter and leaf thickness were investigated immediately after four week irradiation. The plant height (p<0.001), internode length (p<0.01), the number of leaves (p<0.001) and stalk diameter (p<0.05) were significantly decreased an increasing doses of gamma-ray. Among them, especially, the internode length was remarkably decreased showing the RD50 (Reduction Dose 50) at approximately 65 Gy. The antioxidant response after four weeks of recovery period, ascorbate peroxidase (APX) (p<0.01), superoxide dismutase (SOD) (p<0.01) and peroxidase (POD) (p<0.001) were significantly increased with an increasing dose of gamma-ray. And malondialdehyde (MDA) (p<0.01) contents showed the significant increase at the 70 and 100 Gy which means the oxidative stress was lasting for a considerable period. In this study, the 50 Gy irradiation as optimal dose showed higher growth than the $RD_{50}$, it also showed insignificant differences on the antioxidant responses and MDA contents. However, the 100 Gy dose showed lower growth than $RD_{50}$.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

The Effects of Treadmill Exercise on Cognitive Performance, Brain Mitochondrial Aβ-42, Cytochrome c, SOD-1, 2 and Sirt-3 Protein Expression in Mutant (N141I) Presenilin-2 Transgenic Mice of Alzheimer's Disease (트레드밀 운동이 mutant (N141I) presenilin-2 유전자를 이식한 알츠하이머질환 모델 생쥐 뇌의 Aβ-42, cytochrome c, SOD-1, 2와 Sirt-3 단백질 발현에 미치는 영향)

  • Koo, Jung-Hoon;Eum, Hyun-Sub;Kang, Eun-Bum;Kwon, In-Su;Yeom, Dong-Cheol;An, Gil-Young;Oh, Yoo-Sung;Baik, Young-Soo;Cho, In-Ho;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.444-452
    • /
    • 2010
  • The purpose of this study was to investigate the effects of treadmill exercise on $A{\beta}$-42, cytochrome c, SOD-1, 2 and Sirt-3 protein expressions in brain cytosol and mitochondria in mutant (N141I) presenilin-2 transgenic mice with Alzheimer's disease (AD). The mice were divided into four groups (Non-Tg-sedentary, n=5; Non-Tg treadmill exercise, n=5; Tg-sedentary, n=5; Tg treadmill exercise, n=5). To evaluate the neuroprotective effect of treadmill exercise, Non-Tg and Tg mice were subjected to exercise training on a treadmill for 12 wk, after which their brain cytosol and mitochondria were evaluated to determine whether any changes in the cognitive performance, $A{\beta}$-42 protein, cytochrome c protein, anti-oxidant enzymes (SOD-1, SOD-2) and Sirt-3 protein had occurred. The results indicated that treadmill exercise resulted in amelioration in cognitive deficits of Tg mice. In addition, the expressions of mitochondrial $A{\beta}$-42 and cytosolic cytochrome c protein were decreased in the brains of Tg mice after treadmill exercise, whereas antioxidant enzymes, SOD-l and SOD-2 were significantly increased in response to treadmill exercise. Furthermore, treadmill exercise significantly increased the expression of Sirt-3 protein in Non-Tg and Tg mice. Taken together, these results suggest that treadmill exercise is a simple behavioral intervention which can sufficiently improve cognitive performance and inhibit $A{\beta}$-induced oxidative stress in AD.