• 제목/요약/키워드: oxidative coupling

검색결과 72건 처리시간 0.026초

Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

  • Lee, Minjae;Kim, Bo-Hyun;Lee, Yuna;Kim, Beom-Tae;Park, Joon B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1979-1984
    • /
    • 2014
  • We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in $H_2$ and $O_2$ gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

Effects of Taurine Supplementation on Mitochondrial Function in Chronic Ethanol Administered Rats

  • Shim Kwan-Seop;Park Garng-Hee;Kim Sook-Bae
    • Journal of Community Nutrition
    • /
    • 제7권3호
    • /
    • pp.163-168
    • /
    • 2005
  • The present investigation was undertaken in vivo to determine whether the functional alterations of hepatic mitochondria induced by ethanol might be prevented by taurine. We examined the effects of supplementation of taurine on hepatic mitochondrial oxidative phosphorylation in the chronic ethanol-administered rats. Isolated hepatic mitochondria from three groups of rats were functionally tested by an analysis of $\beta-hydroxbutyrate-supported$ respiration and the coupling of this process to ATP synthesis in the presence of ADP. The three groups were control group(CO), ethanol(60g/L) administered group (AL), and ethanol (60g/L) + taurine (5g/L) supplemented group (AT). Ethanol and/or taurine were given in drinking water for 10 weeks. The mitochondria from AL group had lower state 4 respiratory rate, respiratory control (RC) ratio and ADP : O(P/O) ratio than those from CO and AT group. It showed that the ethanol administered rats were less coupled and thus less efficient with respect to mitochondrial ATP synthesis than both control rats and ethanol + taurine supplemented rats. It suggests that taurine supplementation might improve the impaired oxidative phosphorylation efficiency in mitochondrial dysfunction that is recognized as a cause of liver diseases in chronic ethanol consumption.

천연망간산화물을 이용한 클로로페놀류의 산화중합반응 (Oxidative Coupling Reaction of Chlorophenols by Natural Manganese Dioxides)

  • 전선영;고석오
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권4호
    • /
    • pp.62-69
    • /
    • 2005
  • 본 연구에서는 천연 망간산화물에 의한 4-클로로페놀 화합물의 제거효과를 평가하였으며 자연유기물질과 용액의 pH에 의한 분해율 변화를 살펴보았다. 천연망간산화물은 4-클로로페놀 화합물의 제거에 효과적이었으며 실험결과의 분석을 통하여 반응계수 및 차수에 대한 정량적인 값을 도출하였다. 그 결과, 전체적인 반응은 2차반응으로서 4-클로로페놀 화합물에 대하여 1차, 망간산화물에 대하여 1차에 비례하는 반응이었다. 망간산화물에 의한 4-클로로페놀 화합물의 산화반응은 표면에서 일어나며 pH에 큰 영향을 받았다. 용액의 pH가 망간산화물의 영가전위(PZC) 값보다 클 경우 반응율은 급격히 감소하였으며 PZC 보다 pH가 작은 경우에도 반응율은 감소하였다. 휴믹산을 첨가한 경우 4-클로로페놀 화합물의 산회중합 반응은 다소 증가하는 경향을 보여 휴믹산이 중합반응에 관여하고 있다고 평가할 수 있다. 본 연구 결과, 경제적인 비용으로서 천연망간산화물을 이용하여 페놀계 오염물의 제거에 효과적으로 사용 할 수 있는 방안을 제시하였다.

항균성물질 thelepin의 spirobenzopyranone 유도체의 합성과 생물활성 (Synthesis and biological activity of spirobenzopyranone derivative as analogs of thelepin, isolated from the marine annelid Thelepus setosus)

  • 고병섭;절곡륭지
    • Applied Biological Chemistry
    • /
    • 제35권6호
    • /
    • pp.470-474
    • /
    • 1992
  • 해양환형동물 thelepus setosus로부터 분리된 thelepin ${\underline{2}}$의 항균활성에 착안하여 새로운 항균성 선도구조를 찾아내고자, B 환구조를 coumaran형에서 chroman-4-one형으로 전환하고 생물활성을 조사하였다. Thelepin의 spirobenzopyranone 유도체를 산화적분자내에 환반응을 이용하여 합성하였으며 진균 2종과 박테리아 2종을 대상으로 paper disc법으로 생물활성을 조사한 결과 gram-positive 박테리아인 Bacillus subtilis에 대하여 $5\;{\mu}g/disc$ 수준에서 억제 활성을 보였다.

  • PDF

생약으로 산화적 결합 효소인 갑상선 peroxidase의 저해제 검색 (Screening of Inhibitor of Thyroid Peroxidase, an Oxidative Coupling Enzyme from Natural Products)

  • 이현정;장미영;김미리;배기환;석대은
    • 약학회지
    • /
    • 제43권3호
    • /
    • pp.334-341
    • /
    • 1999
  • Thyroid peroxidase is a biochemical target protein for the antithyroid drugs. Ethanol extracts from one hundred and thirty seven natural products were screened for the inhibition of thyroid peroxidase activity. Thyroid peroxidase was purified from porcine thyroids, and the inhibition of peroxidase activity was evaluated using guaiacol oxidation (C-C coupling) assay. Twenty one natural products expressed a remarkable inhibition (>50%) of peroxidase activity at $330{\mu\textrm{g}}$ solid weight/m. The 50% inhibitory concentration ($IC_{50}$) of 70% ethanol extract from six potent natural products ranged from 3.1 to $31.2{\;}{\mu\textrm{g}}$ solid weight/m, in contrast to the range ($0.33~0.54{\;}{\mu\textrm{g}}/ml$) of $IC_{50}$ values fro catechin and epigallocatechin gallate as positive controls. Noteworthy, the extract of Camellia taliensis showed irreversible inhibition of the enzyme. It is suggested that extract from some natural products such as Camellia taliensis, Rheum undulatum or Euphorbia perinensis, exhibiting a potent inhibition of peroxidase activity, may be developed as sources of potent antithyroid agents.

  • PDF

Metal effects in Mn-Na2WO4/SiO2 upon the conversion of methane to higher hydrocarbons

  • Tang, Liangguang;Choi, Jonghyun;Lee, Woo Jin;Patel, Jim;Chiang, Ken
    • Advances in Energy Research
    • /
    • 제5권1호
    • /
    • pp.13-29
    • /
    • 2017
  • The roles of Na, Mn, W and silica, and the synergistic effects between each metal in the $MnNa_2WO_4/SiO_2$ catalyst have been investigated for oxidative coupling of methane (OCM). The crystallisation of amorphous silica during calcination at $900^{\circ}C$ was promoted primarily by Na, but Mn and W also facilitated this process. The interaction between Na and Mn tended to increase the extent of conversion of $Mn_3O_4$ to $Mn_2O_3$. The formation of $Na_2WO_4$ was dependent on the order in which Na and W were introduced to the catalyst. The impregnation of W before Na resulted in the formation of $Na_2WO_4$, but this did not occur when the impregnation order was reversed. $MnWO_4$ formed in all cases where Mn and W were introduced into the silica support, regardless of the impregnation order; however, the formation of $MnWO_4$ was inhibited in the presence of Na. Of the prepared samples in which a single metal oxide was introduced to silica, only $Mn/SiO_2$ showed OCM activity with significant oxygen conversion, thus demonstrating the important role that Mn plays in promoting oxygen transfer in the reaction. The impregnation order of W and Na is critical for catalyst performance. The active site, which involves a combination of Na-Si-W-O, can be formed in situ when distorted $WO_4^{2-}$ interacts with silica during the crystallisation process facilitated by Na. This can only occur if the impregnation of W occurs before Na addition, or if the two components are introduced simultaneously.

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Park, Jong Sik;Jun Jong Ho;Kim Yong Rok;Lee Sung Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1058-1064
    • /
    • 1994
  • Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.