• Title/Summary/Keyword: oxidative coupling

Search Result 72, Processing Time 0.03 seconds

Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation (망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법)

  • Kang, Ki-Hoon;Shin, Hyun-Sang;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.115-123
    • /
    • 2007
  • Immobilization of contaminants in subsurface environment is one of the major processes that determine their fate. Especially, immobilization by oxidative-coupling reactions, which is irreversible in the bio-chemical reactions and results in a significant reduction of toxicity, can be successfully applied for the remediation of contaminated soil and groundwater more effectively than conventional degradation. As a catalyst of this oxidative-coupling reaction, manganese oxide has many advantages in practical aspects as compared to microorganisms or oxidoreductive enzymes extracted from microorganisms, fungi, or plants. This paper is to present recent research achievements on the treatment mechanisms of various organic contaminants by manganese oxide. Especially, treatment methods of non-reactive organic compounds to Mn oxide are the main focus; i.e., application of reaction mediator, PAHs treatment method, combination with an appropriate pretreatment such as reduction using $Fe^0$, which suggests the potential of a wide range of engineering application. Concerning the natural carbon cycle processes, immobilization and stabilization by oxidative coupling reaction can be effectively applied as a environmentally-friend remediation method especially for aromatic contaminants which possess a high resistance to degradation.

Enzymatic Synthesis of a Dihydrobenzofuran Neolignan by Oxidative Coupling

  • Yeo, Ho-Sup;Lee, Jou-Heon;Kim, Jin-Woong
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.306-308
    • /
    • 1999
  • The oxidative dimerization of ferulic acid has been carried out using horse-radish peroxidase as catalyst to give a dihydrobenzofuran neolignan (1), the structure of which was elucidated as (2SR, 3RS)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3n-butoxycarbonyl-5-(2E-carboxyethenyl)-7methoxybenzofuran by spectroscopic analyses. This compound showed more potent cytotoxicity against several tumor cell lines than the starting material.

  • PDF

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Oxidative Coupling Polymerization of Diethynylsilane Derivatives and 1,2-Diethynyl-1,1,2,2-tetramethyldisilane

  • Kim, Ji-Ho;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.869-874
    • /
    • 2006
  • We have carried out the Glaser oxidative coupling polymerizations of diethynyldiphenylsilane, diethynylmethylphenylsilane,diethynylmethyloctylsilane, and 1,2-diethynyl-1,1,2,2-tetramethyldisilane to afford polycarbosilanes containing diethynyl and organosilane groups in the main chain, such as poly(diethynyldiphenylsilane), poly(diethynylmethylphenylsilane), poly(diethynylmethyloctylsilane), and poly(1,2-diethynyl-1,1,2,2-tetramethyldisilane), respectively. These obtained materials are almost insoluble in common organic solvents such as $CHCl_3$ and THF probably due to the presence of a rigid rod diacetylene group along the polymer main chain. Therefore, the polymers were characterized using several spectroscopic methods in solid state. FTIR spectra of all the polymeric materials show that the characteristic $C \equiv C$ stretching frequencies appear at 2147-2154 $cm ^{-1}$, in particular. The polymers in the solid state exhibit that the strong maximum excitation peaks appear at 260-283 nm and the strong maximum fluorescence emission bands at 367-412 nm, especially. Thermogravimetric analysis of the materials shows that about 55-68% of the initial polymer weights remain at 400 ${^{\circ}C}$ in nitrogen.

망간산화물을 이용한 TNT 환원부산물의 산화-공유결합 반응

  • 강기훈;임동민;신현상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.43-46
    • /
    • 2004
  • Explosive chemicals have been major soil and groundwater contaminants especially in the nations with active military activities. Of these explosives, 2,4,6-trinitrotoluene (TNT) is the most refractory one due to its structural characteristics. Although its efficient reduction by Fe(0) is well-known, the reduction products - mainly aminotoluenes - still possess toxicities to terrestrial biota, and are resistant to biological degradation. In this study, therefore, abiotic transformation of TNT reduction products via oxidative-coupling reaction was evaluated using Mn oxide which is ubiquitous in natural soils. The transformation efficiency is increased with the number of amino groups. Considering the very efficient reduction rate of TNT by Fe(0), Mn oxide can be successfully used for the removal of TNT reduction products.

  • PDF

Peroxidase-mediated Formation of the Fungal Polyphenol 3,14'-Bihispidinyl

  • Lee, In-Kyoung;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.107-109
    • /
    • 2008
  • Medicinal fungi, Phellinus linteus and Inonotus xeranticus, produce a cluster of yellow pigment in their fermentation broth that acts as an important element of biological activity. The pigment is composed of diverse polyphenols with a styrylpyrone moiety, mainly hispidin and its dimers, 3,14'-bihispidinyl, hypholomine B, and 1,1-distyrylpyrylethan. Although dimeric hispidins were proposed to be biosynthesized from two molecules of monomer via oxidative coupling by ligninolytic enzymes, laccase and peroxidase, the details of this process remain unknown. In this preliminary study, we attempted to achieve enzymatic synthesis of the hispidin dimer from hispidin by using commercially available horseradish peroxidase (HRP). Consequently, a hispidin dimer, 3,14'-bihispidinyl, was synthesized, whereas the other dimers, hypholomine B and 1,1-distyrylpyrylethan, were not produced. This result suggested that the oxidative coupling at the C-3 and C-14' positions of hispidins was dominant in the process of dimerization by HRP, and indicated that additional catalysts or substrates would be needed to synthesize other hispidin dimers present in the fungal metabolite.

망간산화물을 이용한 1-Naphthol의 산화-공유결합 반응 속도 연구

  • Im Dong-Min;Sin Hyeon-Sang;Jeon Byeong-U;Gang Gi-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.49-52
    • /
    • 2005
  • In this study, abiotic transformation of 1-naphthol via oxidative-coupling reaction was evaluated using Mn oxide which is ubiquitous in natural soils. The transformation of 1-naphthol catalyzed by synthetic birnessite $({\delta}-MnO_2)$ followed pseudo-lst order reaction, and the rate constants was in the range of $0.053{\sim}0.13\;min^{-1}$ with birnessite loadings of $12.5{\sim}50\;mg/20\;mL$. Since the oxidation of 1-naphthol was occurred on the reactive surface of the oxide particles, the rate constants with various birnessite loadings were correlated with birnessite surface area concentration. The correlation showed a strong linearity, which confirms the supposition of the surface reaction. From the correlation, therefore, the surface area normalized rate constant, $k_{surf}$, was determined to be 0.032 $L/m^2\;min$.

  • PDF

Oxidative Transformation of 1-Naphthol Using Manganese Oxide (망간산화물을 이용한 1-Naphthol의 산화 제거 연구)

  • Lim, Dong-Min;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of natural Mn oxides present in soil, was investigated in various experimental conditions(reaction time, Mn oxide loadings, pH, etc). Removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-vis. and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, f, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amount of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, surface area-normalized specific rate constant, $k_{surf}$ was also determined to be $9.31{\times}10^{-4}(L/m^2{\cdot}min)$ for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4.

Methane Conversion over Supported Lead Oxide Catalysts (담지된 납산화물 촉매상에서 메탄의 전환반응)

  • Jang Jong-San;Park Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.147-156
    • /
    • 1992
  • Supported lead oxide catalysts were prepared by using ${\alpha}-,{\beta}-{\gamma}$-alumina, and MgO as a support. Among the supported lead oxide catalysts, MgO-supported catalyst showed the highest $C_2^+$ hydrocarbon selectivity for the methane conversion into $C_2^+$ hydrocarbons, but ${\gamma}$-alumina-supported PbO catalyst gave the highest $CO_2$ selectivity. And ${\alpha}$-alumina-supported catlyst showed the midium activity, whereas ${\beta}$-alumina-supported catalyst gave little activity. These reaction characteristics seemed to be largely dependent on the acticity of lattice oxygens in supported catalysts, which would be influnto be largely dependent on the activity of lattice oxygens in supported catalysts, which would be influenced in the interaction between the supports and lead oxides and the properties of supports. Especially, much higher ration of (002)/(111) peak intensities for PbO phase on MgO support than on the other supports in X-ray diffraction analysis was considered to be ab evidence that methane oxidative coupling of methane might be so-called structure-sensitive reaction, and this seemed to be an example of surface oxide-support interaction (SOSI) in the oxidative coupling reaction.

  • PDF