• Title/Summary/Keyword: oxidation reduction potential (ORP)

Search Result 93, Processing Time 0.025 seconds

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

Speciation of Phosphorus Dependent upon pH and Oxidation Reduction Potential in Overlying Water and Sediment (pH와 산화환원전위에 따른 상등수-퇴적물에서의 인 형태 변화)

  • Jung, Woo-Hyeok;Kim, Geon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.472-479
    • /
    • 2006
  • In this research, speciation of phosphorus in sediment and overlying water dependent upon pH and ORP(Oxidation Reduction Potential) was studied. Three possible conditions were simulated: open system with circulation, closed system with stratification and closed system with sand capping on the sediment. Phosphorus release rate from sediment was increased for both open system and closed system if pH was less than 6.0. Phosphorus concentration for closed system was increased from 0.9 mg/L to 0.51 mg/L, and stabilized at 0.34 mg/L if anaerobic conditions were maintained in the overlying water. When sand capping was implemented, phosphorus concentrations of overlying water were maintained less than those of closed system.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

A Study on Anaerobic Release Characteristics of Marine Sediment and Effect of CaO2, an Oxygen Releasing Compound (해양 퇴적물의 혐기적 용출특성과 이에 미치는 산소발생제 CaO2의 영향에 대한 연구)

  • Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4047-4054
    • /
    • 2010
  • We studied the release characteristics of the marine sediment which could facilitate sea eutrophication through some lab-scale simulation experiments. Environmental indicators such as pH, ORP(oxidation reduction potential), nitrogens, and phosphates were measured in order to calculate the corresponding release rates. $CaO_2$, an oxygen releasing compound was used to determine how it would effect on the natural process of sedimental release. COD, ammonia nitrogen, phosphorous compounds were less released under the oxic environment caused by $CaO_2$. This basic data will help developing methodology for reducing marine eutrophication which may be initiated by the sedimental release.

Detection of Equipment Faults at Sequencing Batch Reactor Using Dynamic Time Warping (동적시간와핑을 이용한 연속회분식 반응기의 장비고장 감지)

  • Kim, Yejin
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.525-534
    • /
    • 2016
  • The biological wastewater treatment plant, which uses microbial community to remove organic matter and nutrients in wastewater, is known as its nonlinear behavior and uncertainty to operate. Therefore, operation of the biological wastewater treatment process much depends on observation and knowledge of operators. The manual inspection of human operators is essential to manage the process properly, however, it is impossible to detect a fault promptly so that the process can be exposed to improper condition not securing safe effluent quality. Among various process faults, equipment malfunction is critical to maintain normal operational state. To detect equipment faults automatically, the dynamic time warping was tested using on-line oxidation-reduction potential (ORP) and dissolved oxygen (DO) profiles in a sequencing batch reactor (SBR), which is a type of wastewater treatment process. After one cycle profiles of ORP and DO were measured and stored, they were warped to the template profiles which were prepared already and the distance result, accumulated distance (D) values were calculated. If the D values were increased significantly, some kinds of faults could be detected and an alarm could be sent to the operator. By this way, it seems to be possible to make an early detecting of process faults.

Feasibility Study on Production of Liquid Fertilizer in a 1 ㎥ Reactor Using Fishmeal Wastewater for Commercialization

  • Gwon, Byeong-Geun;Kim, Joong-Kyun
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • A scaled-up bioconversion of fishmeal wastewater (FMW) into liquid fertilizer was performed five times in a $1m^3$ reactor in order to examine the feasibility of commercialization. The importance of aeration was marked. Analyses indicated that dissolved oxygen (DO) level was closely related to the value of oxidation-reduction potential (ORP) and it was crucial to achieve high-quality liquid fertilizer. When pure oxygen was supplied through four diffusers into the reactor, DO levels and ORP values were maintained over 1.2 mg/L and 0.2 mV, respectively all the time during 52 hr of bioconversion. The pH changed from 6.8 to 5.9. The average removal percentages of chemical oxygen demand ($COD_{Cr}$) and total nitrogen (TN) were 75.0% and 71.6%, respectively. Compared to the result acquired in a 5-L reactor, bioconversion of FMW into liquid fertilizer was achieved in a shorter time under the same removal percentages of $COD_{Cr}$ and TN. The 52-hr culture of inoculated FMW was phytotoxic-free and it possessed comparable fertilizing ability to a liquid fertilizer made from the fish waste in hydroponic culture with amino acid contents of 5.93 g/ 100 g sample. From all the above results, transferring lab-scale data to large-scale production appeared to be successful. As a result, the commercialization of a liquid fertilizer made from FMW was feasible.

Change of Hydroponic Components by Plasma Treatment (플라즈마 처리에 의한 양액 성분 변화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.363-368
    • /
    • 2012
  • The influence of plasma discharge on the nutrient components ($NO_3$-N, $NH_4$-N, $PO_4$-P, K, Ca, and Mg) and water quality [pH, ORP (oxidation-reduction potential) and electric conductivity] of hydroponic water were investigated. It was observed that the $NH_4$-N, $PO_4$-P, K, Ca, and Mg were kept at the constant concentrations for plasma discharging of 90 min. On the other hand, $NO_3$-N concentration was increased with proceeding of the plasma discharge. The increase of $NO_3$-N concentration was considered with the fact that nitric acid was created from nitrogen among supplying air for the insulation of inside of dielectric barrier. ORP and electric conductivity was increased with plasma discharging time. However, pH was decrease with what because of the generation of the nitric acid. When adjusting the hydroponic ingredients, pH and conductivity must to be considered because of the change of pH and conductivitiy with the discharging.

A Study on the removal of Metallic Impurities on Si-wafer using Electrolyzed Water (전해수를 이용한 실리콘 웨이퍼 표면의 금속오염 제거)

  • Yoon, Hyo-Seob;Ryoo, Kun-Kul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.1-5
    • /
    • 2000
  • As the semiconductor devices are miniaturized, the number of the unit cleaning processes increases. In order to processes by conventional RCA cleaning process, the consumption of volume of liquid chemical and DI water became huge. Therefore, the problem of environmental issues are evolved by the increased consumption of chemicals. To resolve this matter, an advanced cleaning process by Electrolyzed Water was studied in this work. The electrolyzed water was made by an electrolysis equipment which was composed of three chambers of anode, cathode, and middle chambers. In the case of electrolyzed water with electrolytes in the middle chamber, oxidatively acidic water of anode and reductively alkaline water of cathode were obtained. The oxidation/reduction potentials and pH of anode water and cathode water were measured to be +l000mV and 4.8, and -530mV and 6.3, respectively. The Si-wafers contaminated with metallic impurities were cleaning with the electrolyzed water. To analysis the amounts of metallic impurities on Si-water surfaces, ICP-MS(Inductively Coupled Plasma-Mass spectrometer) was introduced. From results of ICP-MS measurements, it was concluded that the ability of electrolyzed water was equivalent to that of the conventional RCA cleaning.

  • PDF

Environmental Change and Its Enhancement of a Bay Sediment by Using Useful Microbial and Chemical Treatments (연안저질 환경 개선을 위한 유용 미생물제제 및 산화제의 사용에 따른 환경변화 및 효율성 관찰)

  • Cho, Dae-Chul;Bae, Hwan-Jin;Lee, Jung-Yeol;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1355-1362
    • /
    • 2010
  • This study was carried out in order to observe how the bay sediment would be changed with microbial treatments and a chemical oxidant like $CaO_2$. The sediment during the treatments was analyzed in terms of pH, ORP, volatile organics content, COD, AVS, T-N, and T-P. With $CaO_2$ treatment, pH was kept over 9.66 and ORP ranged from +4.70~+46.0, which meant an aerobic state meanwhile with the microbial treatment those were worse. In addition the chemical treatment showed better environmental index values than the microbial one: volatile organics content and COD values in the former were 12.9% and 37.9% while those in the latter were 4.5% and 18.7%, respectively. AVS and T-P were 71.1% and 100% versus 56.5% and 85.8%, respectively. However, the microbial treatment was better for T-N(66% higher). On the other hand, both treatment at a time enhanced all the environmental indices but COD meantime pH and ORP values were lower than with the chemical treatment only. Thus additional input of an oxygen generator like $CaO_2$ could improve the environmental state of a bay sediment where the biological treatment is going on.

A Study on Si-wafer Cleaning by Electrolyzed Water (전리수를 이용한 실리콘 웨이퍼 세정)

  • Yun, Hyo-Seop;Ryu, Geun-Geol
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-257
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning, high temperature process which consumes vast chemicals and ultra Pure water(UPW). This technology gives rise to the many environmental issues, therefore some alternatives have been studied. In this study, intentionally contaminated Si wafers were cleaned using the electrolyzed water(EW). The EW was generated by an electrolysis equipment which was composed of anode. cathode, and toddle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case $NH_4$Cl electrolyte, the oxidation-reduction potential(ORP) and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.7, and -750mV and 9.8, respectively. For cleaning metallic impurities, AW was confirmed to be more effective than that of CW, and the particle distribution after various particle removal processes was shown to be same distribution.

  • PDF