• Title/Summary/Keyword: oxidation barrier

Search Result 202, Processing Time 0.032 seconds

Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials (머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향)

  • Kim, Dongwoo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

Fabrication of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Plating (무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극의 확산 방지막 제조)

  • Choi, Jae-Woong;Hong, Seok-Jun;Lee, Hee-Yeol;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • In this study, we have investigated the availability of the electroless Ni-B plating for a diffusion barrier of the bus electrode. The Ni-B layer of 1$\beta$: thick was electroless deposited on the electroplated Cu bus electrode for AC plasma display. The layer was to encapsulate Cu bus electrode to prevent from its oxidation and to serve as a diffusion barrier against Cu contamination of the transparent dielectric layer in AC plasma display. The microstructure of the as-plated barrier layer was made of an amorphous phase and the structure was converted to crystalline at about 30$0^{\circ}C$. The concentration of boron was about 5∼6 wt.% in the electroless Ni-B deposit regardless of DMAB concentration. The electroless Ni-B deposit was coated on the surface of the electroplated Cu bus electrode uniformly. And the electroless Ni-B plating was found to be an appropriate process to form the diffusion barrier.

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Experimental Investigations on Barrier Oxidation in $N_{B}/A_{L}O_{X}/N_{B}$ Josephson Junctions

  • Kim, Kyu-Tae;Hong, Hyun-Kwon;Lee, Sang-Hwa;Nam, Du-Woo;Lee, Kyu-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.17-20
    • /
    • 2003
  • Josephson junctions were fabricated for several oxidation conditions and several junction sizes. Considering self-field effect suppressing the observed critical current (Ic) at large junctions, the observed Ic values were in good agreement with theoretical prediction. The predicted junction critical current for small junction limit was also confirmed by experiment. The dependence of the estimated Jc as a function of oxidation exposure showed that our junctions have lower Jc than other authors' at the same oxidation exposure. This is thought to be one of equipment-specific phenomena. Details of experimentals will be reported with brief discussion.

High-temperature Oxidation of ZrO2/Al2O3 Thin Films (ZrO2/Al2O3 박막의 고온산화)

  • Park, Soon Young;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.117-117
    • /
    • 2014
  • Thin $ZrO_2/Al_2O_3$ films were deposited on a tool steel substrate using Zr and Al cathodes in a cathodic arc plasma deposition system (CAPD), and then oxidized at $600-900^{\circ}C$ in air for up to 50 h. They effectively suppressed the oxidation of the substrate up to $800^{\circ}C$ by acting as a barrier layer against the outward diffusion of the substrate elements and inward diffusion of oxygen. However, rapid oxidation occurred at $900^{\circ}C$ due mainly to the increased diffusion and subsequent oxidation of steel as well as the crystallization of amorphous $Al_2O__3$.

  • PDF

Surface Protection Obtained by Anodic Oxidation of New Ti-Ta-Zr Alloy

  • Vasilescu, C.;Drob, S.I.;Calderon Moreno, J.M.;Drob, P.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • A new 80Ti-15Ta-5Zr wt% alloy surface was protected by anodic oxidation in phosphoric acid solution. The protective oxide layer (TiO2, ZrO2 and Ta suboxides and thickness of 15.5 nm) incorporated $PO{_4}^{3-}$ ions from the solution, according to high resolution XPS spectra. The AFM analysis determined a high roughness with SEM detected pores (20 - 50 nm). The electrochemical studies of bare and anodically oxidized Ti-15Ta-5Zr alloy in Carter-Brugirard saliva of different pH values and saliva with 0.05M NaF, pointed to a nobler surface for the protected alloy, with a thicker electrodeposited oxide layer acting as a barrier against aggressive ions. The oxidized alloy significantly decreased corrosion current densities and total quantity of ions released into the oral environment in comparison with the bare one, at higher polarisation resistance and protective capacity of the electrodeposited layer. The impedance data revealed a bi-layered oxidation film formed by: a dense, compact, barrier layer in contact with the metallic substrate, decreasing the potential gradient across the metal/oxide layer/solution interface, reducing the anodic dissolution and a more permissive, porous layer in contact with the electrolyte. The open circuit potential for protected alloy shifted to nobler values, with thickening of the oxidation film signifying long-term protection.

Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics (분무건조 및 대기 플라즈마 용사에 의한 탄화규소 세라믹스용 내환경 코팅재의 제조 및 평가)

  • Feng, Fan Jie;Moon, Heung Soo;Kwak, Chan Won;Park, Ji Yeon;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • Environmental barrier coatings (EBCs) are used to protect SiC-based ceramics or composites from oxidation and corrosion due to reaction with oxygen and water vapour at high temperatures above $1000^{\circ}C$. Mullite ceramics have been studied for environmental barrier coatings for Si-based ceramics. More recently, rare earth silicate ceramics have been identified as more water vapour-resistant materials than mullite for environmental barrier coatings. In this study, we fabricate mullite and yttrium silicate ceramics by an atmospheric plasma spray coating method using spherical granules fabricated by spray drying. As a result, EBCs with thicknesses in the range of $200-300{\mu}m$ are successfully fabricated without any macroscopic cracks or interfacial delamination. Phase and microstructure analysis are conducted, and the basic mechanical properties, such as hardness and indentation load-displacement curves are evaluated.

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

Humidity dependent size control of local anodic oxidation on graphene using Atomic Force Microscope (원자힘 현미경의 습도 조절에 의한 그래핀 국소 산화)

  • Ko, Seoknam;Lee, Seong jun;Son, Maengho;Ahn, Doyeol;Lee, Seung-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.226-227
    • /
    • 2014
  • We demonstrate nanoscale local anodic oxidation (LAO) patterning on few layer graphene using atomic force microscope (AFM) at room temperature and normal atmosphere. We focus on the humidity dependency in nanoscale oxidation of graphene. The relationship between the oxidation size and the AFM setting values, such as set point, tip speed, and humidity are observed. By changing these values, proper parameters were found to produce features on demand size. This technique provides an easy way to form graphene oxide lithography without any chemical resists. We have obtained oxidation size down to 50-nm with 6-nm-height oxide barrier line with $0.1{\mu}m/s$ tip scanning speed and micrometer size symbols on a graphene flake. We attribute the bumps to local anodic oxidation on graphene surface and combination of oxygen ions into the graphene lattice.

  • PDF

Gelatin Coating on Quality Attributes of Sausage during Refrigerated Storage

  • Shon, Jin-Han;Eo, Ji-Hyun;Choi, Yong-Hwa
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.834-842
    • /
    • 2011
  • Gelatin-based edible coating was used to reduce the oxidative degradation of low-fat sausages (LFSs) stored at $4^{\circ}C$ for 8 wk under vacuum packaging. The gelatin coating reduced thiobarbituric acid-reactive substances and peroxide value by 21.5 and 26.5%, respectively, compared with the controls. The moisture barrier effect was significantly better for the gelatin coating compared to the control. The gelatin coating reduced moisture loss in sausages by 32.6% over the control. However, the gelatin coating of sausages did not inhibit the growth of either the total plate counts or L. monocytogenes. Data show that gelatin can effectively be used as a natural antioxidative and moisture barrier coating to extend the quality and shelf life of sausages.