• Title/Summary/Keyword: oxaloacetate

Search Result 131, Processing Time 0.02 seconds

Purification and Characterization of Mitochondrial Malate Dehydrogenase during Ovarian Development in Aedes aegypti L. (Aedes aegypti L. 난성숙과정중 생성되는 Mitochondrial Malate Dehydrogenase의 정제 및 특성)

  • 김인규;이강석;정규회;박영민;성기창
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.181-190
    • /
    • 1995
  • Malate dehydrogenase in the mosquito ovary after a blood meal, Aedes aegypti, was purified and characterized. MDH purification steps involved DEAE-Sepharose, S-Sepharose and Cibacron blue affinity chromatography. The purified MDH was 70,000 daltons in molecular weight and was a homodimer consisting of tow identical subunits. Optimal activity of purified MDH was obtained pH 9.0-9.2 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With obtained pH 9.0-92 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With malate as substrate, purified mitochondrial MDH (1.28$\times$${10}^{-4}$ M) had lower Km value than cytoplasmic MDH (8.92x${10}^{-3}$ M). MDH activity was inhibited by citrate, $\alpha$-ketoglutarate, and ATP. Inhibition of MDH activity by ATP and citrate was less in malate-oxaloacetate reaction and in oxaloacetate-malate reaction. MDH activity was completely inhibited by ATP in oxaloacetate-malate reaction and not inhibited by citrate in malate-oxaloacetate reaction. Temporal activity change of MDH is similar to that of isocitrate dehydrogenase in the ovary after blood feeding; their activities in the ovary began to rise at 18 hours after a blood meal, and reached at the maximal level at 48 hours.

  • PDF

Some Enzymes of Tricarboxylic Acid Cycle and Metabolites of Carbohydrate Metabolism in Adult Isoparorchis hypselobagri(Digenea: Trematoda) During in vitro Starvation

  • Bera, Bireshwar;Manna, Buddhadeb
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.91-95
    • /
    • 2009
  • The presence of considerable amount of enzymes of TCA cycle isocitrate dehydrogenase (ICDH-NADP+, EC1.1.1.42), $\alpha$-ketogluterate dehydrogenase ($\alpha$-KGD, EC1.2.4.2) and malate dehydrogenase (MDH, EC1.1.1.37) in fresh control and in vitro starved adult Isoparorchis hypselobagri establish the functional TCA cycle in this fluke. The major metabolic end products are pyruvate, lactate, oxaloacetate and malate. The ratio of oxaloacetate/malate assess that oxaloacetate is reduced to malate and in this fluke the reverse TCA cycle is active. The pyruvate/lactate ratio shows pyruvate is reduced to lactate and the fluke is homolactate farmenters.

Enhancement of Pyruvate Production by Torulopsis glabrata : through Supplement of Oxaloacetate as Carbon Source

  • Liu Li-Ming;Du Guo-Cheng;Li Vin;Li Hua-Zhong;Chen Jian
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.136-141
    • /
    • 2005
  • The capability of utilizing a TCA cycle intermediates as the sole carbon source by the multi-vitamin auxotrophic yeast Torulopsis glabrata CCTCC M202019 was demonstrated with plate count method. It is indicated that T. glabrata could grew on a medium with one of the TCA cycle intermediates as the sole carbon source, but more colonies were observed when glucose, acetate and one of the TCA cycle intermediates coexisted in the medium. Among the intermediates of the TCA cycle examined in this study, cell growth was improved by supplementing oxaloacetate. Further investigation showed that the presence of acetate was necessary when oxaloacetate was supplemented. By supplementing with 10 g/L of oxaloacetate in pyruvate batch fermentation, dry cell weight increased from 11.8 g/L to 13.6 g/L, and pyruvate productivity was enhanced from $0.96\;gL^{-1}h^{-1}\;to\;1.19 gL^{-1}h^{-1}$ after cultivation of 56 h. The yield of pyruvate to glucose was also improved from 0.63 g/g to 0.66 g/g. These results indicate that under vitamins limitation, the productivity and yield of pyruvate could be enhanced via an increase of cell growth by the supplementation of oxaloacetate.

Imitation of Phosphoenolpyruvate to Oxaloacetate Pathway Regulation of Rumen Bacteria in Enteric Escherichia coli and Effect on C4 Metabolism (반추위 미생물이 가진 Phosphoenolpyruvate에서 Oxaloacetate 경로 조절기작의 대장균에서의 모사와 C4대사의 영향)

  • Kwon Yeong-Deok;Kwon Oh-Hee;Lee Heung-Shick;Kim Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2006
  • One of the fermentative metabolism of enteric Escherichia coli was imitated after rumen bacteria, which have high C4 metabolism. E. coli expresses phosphenolpyruvate carboxylase (PPC) for the pathway between phosphoenolpyruvate (PEP) and oxaloacetate (OAA) during glycolytic condition while expresses phosphoenolpyruvate carboxykinase (PCK) during gluconeogenic condition. In contrast to enteric E. coli, rumen bacteria express the PEP-OAA pathway only by PCK. To verify the effect of the regulation imitation on the C4 metabolism of E. coli, PPC-deficient E. coli strain with PCK expression in glycolytic condition was constructed. The PEP-OAA regulation modified E. coli strain increased 2.5-folds higher C4 metabolite than the wild type strain. The potential use of C4 metabolism by regulation control is discussed.

Regulation of Cell Growth and Tylosin Biosynthesis through Flux Control of Metabolic Intermediate in Streptomyces fradiae (Streptomyces fradiae에서 대사중간산물 이용속도에 의한 균체 성장과 tylosin 생합성의 조절)

  • 강현아;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.189-197
    • /
    • 1987
  • The aim of the present study was to investigate the effect of glutamate on the biosynthesis of tylosin. Activities of enzymes involved in the metabolic pathway of glutamate to form tylactone, an essential precursor of tylosin, were determined using Streptomyces fradiae grown at different concentration of glutamate. As results, it was found that cell growth and tylactone formation was controlled by the metabolic flux of oxaloacetate. It was clear that cell growth was favored by the activities of citrate synthase and aspartate aminotransferase, while the tylactone synthesis was stimulated by the activity of methylmalonyl-CoA carboxyltransferase. Therefore it was concluded that channelling of oxaloacetate was a point for favoring either cell growth or tylosin biosynthesis.

  • PDF

Effects of Methanol Extracts of Black Soybean on Enzymes Activities of Serum in Rats Fed Pb and Cd Solution (검정콩 추출물이 납과 카드뮴을 투여한 흰쥐의 혈청 효소 활성도에 미치는 영향)

  • 한성희;신미경;김용욱;임세진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.193-197
    • /
    • 2000
  • The effects of black soybena extracts on enzymes activies of rat were evaluated in present study. Eighty-four male Sprague-Dawley rats weighing 100$\pm$10g were divided into twelve groups which consisted of black soybean extract, Pb and Cd solution, and black soybean extract plus Pb or Cd soln groups. The weight gain was increased in black soybean extracts and Pb soln solution group but decreased in Cd soln solution group. The results obtained form the experiment were as follows: Glutamate pyruvate trasaminase (GPT) and glutamate oxaloacetate oxaloacetate transaminase (GOT) activities were not significantly different among experimental groups. The lactate dehydrogenase (LDH) activities of black soybean extract administered groups were decreased than those of Pb and Cd solution group. Black soybean group increased cholinesterase (ChEase) activity as compared to administration of Pb and Cd soln group.

  • PDF

Gene Amplification of aceA and aceB in Lysine-producing Corynebacterium glutamicum ssp. lactofermentum ATCC21799

  • Kim, Hyung-Joon;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.287-292
    • /
    • 1997
  • The role of glyoxylate bypass in lysine production by Corynebacterium glutamicum ssp. lactofermentum ATCC21799 was analyzed by using cloned aceA and aceB genes which encode enzymes catalyzing the bypass. Introduction of a plasmid carrying aceA and aceB to the strain increased enzyme activities of the bypass to approximately 5 fold on acetate minimal medium. The strain with amplified glyoxylate bypass excreted 25% more lysine to the growth medium than the parental strain, apparently due to the increased availability of intracellular oxaloacetate. The final cell yield was lower in the strain with amplified glyoxylate bypass. These changes were specific to the lysine-producing C. glutamicum ssp. lactofermentum ATCC21799, since the lysine-nonproducing wild type Corynebacterium glutamicum strain grew faster and achieved higher cell yield when the glyoxylate bypass was amplified. These findings suggest that the lysine producing C. glutamicum ssp. lactofermentum ATCC21799 has the ability to efficiently channel oxaloacetate, the TCA cycle intermediate, to the lysine biosynthesis pathway whereas lysine-nonproducing strains do not. Our results show that amplification of the glyoxylate bypass efficiently increases the intracellular oxaloacetate in lysine producing Corynebacterium species and thus results in increased lysine production.

  • PDF

The Effect of Sports Drink Containing Schizandra Chinensis on Blood Biochemical Elements, Exercise Performance and HSP70 (오미자를 이용한 스포츠 드링크 섭취가 혈액성분과 운동수행력 및 HSP70에 미치는 영향)

  • 오재근;김복주;신영오;정희정
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.139-150
    • /
    • 2002
  • OBJECTIVES : Schizandra chinensis is well known for its efficacy at liver function reinforcement, relieving thirst and recovery from fatigue. In this study, we examined the effects of sports drink containing Schizandra chinensis on serum metabolic substrate, electrolyte, stress indicators, related-enzyme and exercise performance, rectal temperature, and heat shock proteinb70 (HSP70). METHODS : Elite long-distance runners (male, 21.3yrs, n=16) were selected and divided into two groups; an experimental group (EXP, n=8) and a control group (CON, n=8). A beverage containing Schizandra chinensis was supplemented 3 times per day to EXP for 4 weeks. Serum biochemical elements (glucose, lactate, total cholesterol, triglyceride, high density lipoprotein cholesterol, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, creatinine, creatine phosphokinase, lactate dehydrogenase, blood urea nitrogen, Na, K, Cl) were analyzed by auto blood analyzer. Exercise performance was measured by treadmill exercise test, HSP70 was detected by electrophoresis and Western blotting, and rectal temperature was measured by rectal temperature probe. RESULTS : Administration of the beverage increased significantly the rest level of blood Na, Cl and glucose and decreased significantly lactate dehydrogenase, glutamate oxaloacetate transaminase. No difference was found in exercise performance, rectal temperature increment or HSP70 concentration between groups. CONCLUSIONS : Administration of a sports drink containing Schizandra chinensis altered blood glucose, lactate dehydrogenase, glutamate oxaloacetate transaminase, Na and Cl levels.

  • PDF

Effect of Nonylphenol on Plasma Glutamate Oxaloacetate Transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) in the Juvenile Rockfish, Sebastes schlegeli

  • Hwang Un-Gi;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.308-310
    • /
    • 2002
  • Effect of 4-nonylphenol (4-NP), endocrine disrupting compounds (EDCs), on glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) were investigated in the plasma of juvenile rockfish, Sebastes schlegeli. Fish were injected with 4­NP (10, 50, 100 and 200 mg/kg body weight) in $70\%$ ethanol twice at 3-day intervals and plasma sampling were extracted at 7 days after the last injection. Controls received solvent only. 4-NP significant increased GOT in a dose-dependent manner. GPT was markedly elevated to $61\%$ (P<0.05) and $82\%$ (P<0.01) than that of the control at the 4-NP doses of 100 and 200mg, respectively. These results suggest that the estrogenic activity of 4-NP increase plasma GOT and GPT by toxic effect on hepatocyte.

Site-specific Disruption of Glyoxylate Bypass and Its Effect in Lysine-producing Corynebacterium lactofermentum Strain

  • Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.315-320
    • /
    • 1996
  • The role of glyoxylate bypass in a lysine-producing Corynebacterium lactofermentum strain was analyzed. Unlike the wild type, the strain expressed enzymes of glyoxylate bypass during growth in the fermentation broth containing glucose as the carbon source. To evaluate the importance of glyoxylate bypass in the strain, we disrupted chromosomal aceA by using a cloned fragment of the gene. Site-specific disruption of aceA which codes for the isocitrate lyase, the first enzyme of the bypass, was confirmed by Southern blot analysis. The aceA mutant strain completely lost isocitrate lyase activity and ability to grow in a minimal medium containing acetate as the sole carbon source. The mutant strain was similar to its parental strain in growth characteristics and produced comparable amounts of lysine in shake flasks containing glucose as the carbon source. The amount of oxaloacetate accumulated in the fermentation medium was similar for both strains, suggesting that expression of glyoxylate bypass does not necessarily lead to the increase in intracellular oxaloacetate. These data clearly demonstrate that glyoxylate bypass does not function as one of the routes of carbon supply for lysine production in the strain. It appears that the leakiness of the glyoxylate bypass in the strain might be the result of a secondary mutation which arose during previous strain development by random mutagenesis.

  • PDF