• Title/Summary/Keyword: oxalic acid treatment

Search Result 73, Processing Time 0.026 seconds

Furfural Production and Recovery by Two-stage Acid Treatment of Lignocellulosic Biomass (Two-stage 산 처리에 의한 목질계 바이오매스로부터 푸르푸랄 생산과 회수)

  • Shin, Gyeong-Jin;Jeong, So-Yeon;Lee, Hong-Joo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.76-85
    • /
    • 2015
  • In this study, we investigated optimal reaction conditions for furfural production from lignocellulosic biomass by two-stage acid treatment. Furfural produced by this method was recovered using XAD-4 resin. Oxalic and sulfuric acid were used as catalysts for the first stage of treatment. The concentration of xylose in the hydrolysate obtained from the first stage was $18.86g/{\ell}$ with oxalic acid and $19.35g/{\ell}$ with sulfuric acid. The concentration of oligosaccharide was relatively high when sulfuric acid was used. Maximum yield of furfural, that is, 55.10% ($6.71g/{\ell}$), was obtained when oxalic acid was used for the first stage and $0.1m{\ell}$ of sulfuric acid was used for the second stage of treatment for 90 min. Furfural production yield increased with increasing the reaction time. Most of the furfural produced by this two-stage treatment method was recovered using XAD-4 resin.

Ginsenoside Changes in Red Ginseng Manufactured by Acid Impregnation Treatment

  • Kim, Mi-Hyun;Hong, Hee-Do;Kim, Young-Chan;Rhee, Young-Kyoung;Kim, Kyung-Tack;Rho, Jeong-Hae
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • To enhance the functionalities of ginseng, an acid impregnation pre-treatment was applied during red ginseng processing. Acetic, ascorbic, citric, malic, lactic, and oxalic acid were used for the acid impregnation treatment, and total and crude saponin concentrations and ginsenoside patterns were evaluated. Total and crude saponin contents of red ginseng pre-treated by acetic, ascorbic, and citric acid were similar to those of red ginseng without pre-treatment, whereas lactic, malic, and oxalic acid pre-treatment caused a reduction of total and crude saponin in red ginseng. From the high performance liquid chromatography analysis of ginsenosides, increased $Rg_3$ density was shown in red ginseng pre-treated by acetic, ascorbic, and citric acid impregnation. In the case of lactic, malic, and oxalic acid pre-treatment, increased $Rg_1$ density was observed in red ginseng. Increased $Rg_1$ and $Rg_3$ contents due to acid impregnation during red ginseng processing may contribute to improving bioactive functionalities of red ginseng.

Hard Anodizing Treatment in Malic Acid Bath mixed with Oxalic Acid (말릭산과 수산혼합욕에서 경질양극 산화처리)

  • Jeong, Yong-Soo;Chang, Do-Yon;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 1984
  • Hard anodic oxide film was investigated formed on pure aluminium with various temperature (30$^{\circ}-60^{\circ}C$), current densities (1.5-3.0A/$dm^2$) and concentrations(3-15g/l) of oxalic acid in 0.5M malic acid bath. The resulting characteristic of the anodic oxide film obtained were summarized as follows in the view point of physical and mechanical properties in relation with the above process variables. 1. The film thickness increased with oxalic acid concentration and bath temperature, while the reversed phenomena were obtained at a high concentration of oxalic acid and high temperature due to the severe dissolution of the anodic oxide film. 2. The hardness and the abrasion resistance were improved by lowering the addition of oxalic acid and the bath temperature. This feature was directly dependent on the porosity formed on the anodic oxide film. 3. The maximum hardness of anodic oxide film showed Hv 579 in the temperature of 30$^{\circ}C$ with the current density, 2.5A/$dm^2$ in the 0.5M malic acid bath mixed with 5g/l oxalic acid.

  • PDF

Formation of Furans during the Acid Hydrolysis of Agar and Their Removal by Treatments of Lime, Steam-stripping and Hydrophobic Resins (한천의 산 당화에 의한 Furan화합물의 생성 및 제거)

  • Kim, Na-Hyun;Lee, Jae-Won;Seo, Yung-Bum;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2009
  • The ratio of saccharification and formation of furans during the acid hydrolysis of agar with oxalic acid and sulfuric acid were examined base on the contents of the agar and acids. The ratio of saccharification in oxalic acid appeared to be 51~59% somewhat higher than 49~61% of sulfuric acid. Formation of the furans during the acid hydrolysis increased proportional to the contents of agar and acid. The relative formation ratio was high 10~47% for furfural (FUR) and 15~29% for hydroxy-methyl furfural (HMF) in 0.5~1.25% sulfuric acid rather than those of oxalic acid. When comparing the removal efficiency of the furans using an alkali treatment, steam stripping and hydrophobic resins, FUR was eliminated 60% by the alkali treatment, 62~90% by steam stripping and 71~75% by Amberlite XAD4 and 7HP, while HMF was removed to low levels of 10.5%, 4~17% and 13~25%, respectively. The loss of reducing sugar was also observed in process of the removal of furans, and the loss rate was the level of 2~4% in alkali treatment, 11~16% in steam stripping and 7~9% in Amberlite resins.

  • PDF

New Bleaching Method for KP with Permanganate(III) -Evaluation of Role of Oxalic Acid as a Acid Catalyst and a Reductant on the Permanganate Oxidation with Phenolic Model Compounds- (과망간산칼륨을 이용한 KP의 새로운 표백법(제3보) -모델화합물 실험에서 Oxalic acid 첨가의 평가-)

  • Yasuo Kojima
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • Stricter environmental demands have increased the need to replace conventional C/D bleaching sequence by chlorine-free sequence. Permanganate is well known as a powerful oxidant and have been used industrially in variable fields. However, it has considered to be difficult to use permanganate as a bleaching reagent because of its strong oxidative effect decreasing the viscosity of pulps extremely. We have tried to use permanganate as a bleaching reagent for KP under the mild condition and it was clear that pernanganate oxidized lignin remained in pulps selectively and increased pulp brightness decreasing K number of pulps with small degradation of cellulose. We have employed the neutral condition in the permanganate bleaching process in this study. In this case, permanganate was converted to manganese dioxide after bleaching reaction. The manganese dioxide is remained in the treated pulp fibers because of its insolublity in water. So it was required to reduction the manganese oxide to manganese ion by using reductants with acid. In this paper, we proposed to use oxalic acid as a reducing reagent converting manganese oxide to manganese ion after bleaching reaction. Oxalic acid plays the role as a reductant and a acid, so post-treatment after bleaching became to be easy by using oxalic acid. On the study using lignin model compounds, it was clear that permaganate react with phenols firstly, after that oxalic acid reduce the manganese oxide to manganese ion in the mixture of permanganate, phenols and oxalic acid. Several lignin model compounds ($\textit{p}$-hydroxybenzaldehyde, vanillin, syringaldehyde, veratraldehyde) are selected to elucidate the effect of substituents on reaction rate and its mechanism with permanganate including oxalic acid in this study. Except for veratraldehyde, the rate of oxidative degradation of phenolic compounds by permanganate with oxalic acid are higher than neutral condition. Especially, the degradation rate of $\textit{p}$-hydroxybenzaldehyde are strongly dependent on pH of reaction mixture. On the other hand, the degradation rate of veratraldehyde are decreased with decreasing pH and main degradation product is veratric acid. This result indicate that pH of bleaching liquor should be kept over 2 to degrade of non-phenolic lignin in the pulps effectively in permanganate bleaching.

  • PDF

Effect of pre-treatment in 0.5 M oxalic acid containing various NH4F concentrations on PEO Film Formation of AZ91 Mg Alloy (NH4F가 첨가된 0.5 M 옥살산 전처리가 AZ91 마그네슘 합금의 PEO 피막 형성에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated the effect of pre-treatment on the PEO film formation of AZ91 Mg alloy. The pre-treatment was conducted for 10 min at room temperature in 0.5 M oxalic acid (C2H2O4) solution containing various ammonium fluoride (NH4F) concentrations. The pre-treated AZ91 Mg specimens were anodized at 100 mA/cm2 of 300 Hz AC for 2 min in 0.1 M NaOH + 0.4 M Na2SiO3 solution. When AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with NH4F concentration less than 0.3 M, continuous dissolution of the AZ91 Mg alloy occurred together with the formation of black smuts and arc initiation time for PEO film formation was very late. It was noticed that corrosion rate of the AZ91 Mg alloy became faster if small amount of NH4F concentration, 0.1 M, is added. The fast corrosion is attributable to fast formation of porous fluoride together with porous oxides in the reaction products. On the other hand, when AZ91 Mg alloy was pretreated in 0.5 M oxalic acid with sufficient NH4F more than 0.3 M, a thin and dense protective film was formed on the AZ91 Mg alloy surface which resulted in faster initiation of arcs and formation of PEO film.

Properties of Chestnut Starches and Steamed Chestnuts with Different Pretreatment and Storage Conditions

  • Kim, Shin-Hye;Lee, Kyung-Sook;Suh, Dong-Soon;Lee, Young-Chun;Kim, Kwang-Ok
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.534-539
    • /
    • 2008
  • This study investigated the effects of pretreatment and storage conditions on the properties of stored chestnuts. Effects on chestnuts of refrigerated storage (RNT) and frozen storage (FNT) with no pretreatment, frozen storage after oxalic acid treatment without blanching (FON) and with blanching (FOB) were examined. Water binding capacity, swelling power, solubility, and viscosity of the starch produced from RNT, FNT, and FON were similar to those of the starch produced from control (CON). FOB showed significant differences in these properties from CON. Textural properties of starch gels prepared from stored chestnuts except FOB also were very similar to those of CON starch gels. The sensory characteristics of steamed FON and FNT were similar to those of steamed CON except in brown color and hardness. Steamed FNT tended to have higher brown color and lower hardness than steamed FON. Steamed RNT showed significant differences in all the sensory properties except in hardness and cooked chestnut flavor. Steamed FOB was significantly higher than steamed CON in water release and off-flavor. Among the storage conditions examined, frozen storage with oxalic acid treatment is recommended for the long-term storage of chestnuts.

Facile Separation of Zinc Oxalate to Oxalate and its Conversion to Glycolic Acid via Electrochemical Reduction (ZnC2O4의 Oxalate로의 효과적 분리 및 이의 전기화학적 환원을 통한 글리콜산으로의 전환)

  • Sunmi Im;Yiseul Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • Oxalic acid has been traditionally obtained via the oxidation of carbohydrates using nitric acid and catalysts. However, this process produces a variety of nitrogen oxides during oxidation and requires a separation process due to its various intermediates. These products and additional steps increase the harmfulness and complexity of the process. Recently, the electrochemical reduction of carbon dioxide into oxalic acid has been suggested as an environmentally friendly and efficient technology for the production of oxalic acid. In this electrochemical conversion system, zinc oxalate (ZnC2O4) is obtained by the reaction of Zn2+ ions produced by Zn oxidation and oxalate ions produced by CO2 reduction. ZnC2O4 can then be converted to form oxalic acid, but this requires the use of a strong acid and heat. In this study, a system was proposed that can easily convert ZnC2O4 to oxalic acid without the use of a strong acid while also allowing for easy separation. In addition, this proposed system can also further convert the products into glycolic acid which is a high-value-added chemical. ZnC2O4 was effectively separated into Zn(OH)2 powder and oxalate solution through a chemical treatment and a vacuum filtration process. Then the Zn(OH)2 and oxalate were electrochemically converted to zinc and glycolic acid, respectively.

Degumming Effect on Vegetable oil of Degumming agent (각종 탈검제에 의한 식물성 기름의 탈검효과)

  • 김덕숙;안명수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • The almost similar degumming effect was obtained by using oxalic acid instead of phosphoric acid, which also improves waste-water treatment. At this point, solution of Phosphoric, Acetic, Citric, Oxalic, and Nitric acid were used for degumming of rapeseed and soybean oil. Compared with Phosphoric(PA) and Oxalic acid(OA) were showed a simillar degumming effect in these vegetable oils. In rapeseed oil of 85% PA treating group and 5,10% OA fretting group, residual soap and phosphorus content in neutralized oil, color in bleached oil, and peroxide value and fatty acid content in deodrized oil were showed to simillar result. Soybean oil as well as rapeseed oil were showed to similar result. As a result, we could comfirmed substitutive possibility, which change PA into OA as a degumming agent. In the other hand, waste waters were obtained from 55% PA treating group and 10% OA treating group. Analytical result for this waste waters has showed a wide difference, especially in the BOD and COD. The amount of treating agents and time required in the precipitation seperation and chemical treatment each 3 and 1.7 times, which is PA treating group than OA treating group. We have investigated both the simillar degumming effect by OA solution and an alternative the pollution program means of a chemical treatment process is not possible.

  • PDF

Effects of Oxalic and L-ascorbic acids on Iron Removal form Iron-bearing Illite (일라이트 분체 내에 함유된 산화철 제거에 옥살산과 L-아스코르브산이 미치는 영향)

  • Lee, Won-Pyo;Kang, Il-Mo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.141-151
    • /
    • 2007
  • This study was focused on iron removal from illite by L-ascorbic and oxalic acids. Iron has been shown as a secondary mineral such as iron oxides and hydroxides in illite ores. It is also known as a primary agent to degrade brightness index of the ores. Methods such as physical separation and chemical leaching with strong inorganic acids have been widely used to remove the iron from the ores. However, these methods are expensive and give rise to environmental problems. In this study, we examined an alternative method using solutions with different set of combination of sulfuric, hydrochloric, L-ascorbic, and oxalic acids. Compared to chemical treatments with only inorganic acids, our results demonstrate that an addition of L-ascorbic acid in inorganic acids results in decreasing both total concentrations of the inorganic acids and time for the treatments. The treatment with 0.15 M L-ascorbic acid and 0.25 M sulfuric acid in solution for 60 min significantly improved the brightness index from 42.4% to 74.4%. This improvement is similar to that of treatment with only 2.5 M sulfuric acid alone for 150 min. Mineralogical and chemical analyses were performed to compare the effect of acid leaching on illite powders. No obvious differences are observed in the mineralogical characteristics and particle size distributions of the samples. These results suggest that the treatment with the addition of L-ascorbic acid in sulfuric acid could effectively remove iron without modifying the physicochemical properties of illite under conditions used in this study.