• Title/Summary/Keyword: overlay spectrum sharing

Search Result 6, Processing Time 0.021 seconds

Adaptive Power Control Strategy based on Spectrum Sensing for Cognitive Relay Networks (CR 넷워크를 위한 주파수 감지에 기번한 적응적인 전력 제어 전략)

  • HU, SIYUAN;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.82-85
    • /
    • 2019
  • An adaptive power control scheme is proposed for the cognitive relay networks with joint overlay and underlay spectrum sharing model. The transmit power of the secondary user is adjusted adaptively according to the spectrum sensing results and the interference channel condition. The outage probability of the secondary user is compared by Monte - Carlo simulations between the fixed power control scheme and pure overlay or underlay spectrum sharing schemes. The results show that, by employing the adaptive power control strategy, the interference probability of the secondary user to the primary user is decreased by 70 % ~ 80 % under the same outage probability. Also, the outage probability of the secondary user is reduced by 1 ~ 2 orders of magnitude under the same interference probability. Thus, the performance of the spectrum sharing is improved effectively.

Resource Allocation based on Hybrid Sharing Mode for Heterogeneous Services of Cognitive Radio OFDM Systems

  • Lei, Qun;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique for improving the efficiency of radio spectrum. Unlike existing works in the literature, where only one secondary user (SU) uses overlay and underlay modes, the different transmission modes should be allocated to different SUs, according to their different quality of services (QoS), to achieve the maximal efficiency of radio spectrum. However, hybrid sharing mode allocation for heterogeneous services is still a challenge in CRNs. In this paper, we propose a new resource allocation method for hybrid sharing transmission mode of overlay and underlay (HySOU), to achieve more potential resources for SUs to access the spectrum without interfering with the primary users. We formulate the HySOU resource allocation as a mixed-integer programming problem to optimize the total system throughput, satisfying heterogeneous QoS. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with a simultaneous fairness guarantee, and the achieved HySOU diversity gain is a satisfactory improvement.

Two-Tier Interference Elimination for Femtocells Based on Cognitive Radio Centralized Spectrum Management

  • Yi, Leng-Gan;Lu, Yi-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1514-1531
    • /
    • 2014
  • Femtocell provides better coverage and higher spectrum efficiency in areas rarely covered by macrocells. However, serious two-tier interference emerging from randomly deploying femtocells may create dead zones where the service is unavailable for macro-users. In this paper, we present adopting cognitive radio spectrum overlay to avoid intra-tier interference and incorporating spectrum underlay and overlay to coordinate cross-tier interference. It is a novel centralized control strategy appropriate for both uplink and downlink transmission. We introduce the application of proper spectrum sharing strategy plus optimal power allocation to address the issue of OFDM-based femtocells interference-limited downlink transmission, along with, a low-complexity suboptimal solution proposed. Simulation results illustrate the proposed optimal scheme achieves the highest transmission rate on successfully avoiding two-tier interference, and outperforms the traditional spectrum underlay or spectrum overlay, via maximizing the opportunity to transmit. Moreover, the strength of our proposed schemes is further demonstrated by comparison with previous classic power allocation methods, in terms of transmission rate, computational complexity and signal peak-to-average power ratio.

Synergy: An Overlay Internetworking Architecture and Implementation

  • Kwon, Min-Seok;Fahmy, Sonia
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.181-190
    • /
    • 2010
  • A multitude of overlay network designs for resilient routing, multicasting, quality of service, content distribution, storage, and object location have been proposed. Overlay networks offer several attractive features, including ease of deployment, flexibility, adaptivity, and an infrastructure for collaboration among hosts. In this paper, we explore cooperation among co-existing, possibly heterogeneous, overlay networks. We discuss a spectrum of cooperative forwarding and information sharing services, and investigate the associated scalability, heterogeneity, and security problems. Motivated by these services, we design Synergy, a utility-based overlay internetworking architecture that fosters overlay cooperation. Our architecture promotes fair peering relationships to achieve synergism. Results from Internet experiments with cooperative forwarding overlays indicate that our Synergy prototype improves delay, throughput, and loss performance, while maintaining the autonomy and heterogeneity of individual overlay networks.

Cooperative Power Control Scheme for a Spectrum Sharing System

  • Ban, Tae-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.641-646
    • /
    • 2011
  • In this paper, we investigate a power control problem which is very critical in underlay-based spectrum sharing systems. Although an underlay-based spectrum sharing system is more efficient compared to an overlay-based spectrum sharing system in terms of spectral utilization, some practical problems obstruct its commercialization. One of them is a real-time-based power adaptation of secondary transmitters. In the underlay-based spectrum sharing system, it is essential to adapt secondary user's transmit power to interference channel states to secure primary users' communication. Thus, we propose a practical power control scheme for secondary transmitters. The feedback overhead of our proposed scheme is insignificant because it requires one-bit signaling, while the optimal power control scheme requires the perfect information of channel states. In addition, the proposed scheme is robust to feedback delay. We compare the performance of the optimal and proposed schemes in terms of primary user's outage probability and secondary user's throughput. Our simulation results show that the proposed scheme is almost optimal in terms of both primary user's outage probability and secondary user's throughput when the secondary user's transmit power is low. As the secondary user's transmit power increases, the primary user's outage probability of the proposed scheme is degraded compared with the optimal scheme while the secondary user's throughput still approaches that of the optimal scheme. If the feedback delay is considered, however, the proposed scheme approaches the optimal scheme in terms of both the primary user's outage probability and secondary user's throughput regardless of the secondary user's transmit power.

Sidelobe Suppression Technique in OFDM Systems for Spectrum Sharing (스펙트럼 공유를 위한 직교 주파수 분할 다중 (OFDM) 시스템에서의 사이드로브 억압 기법)

  • Hwang, Hu-Mor;Ahmed, Saleem
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1633-1637
    • /
    • 2009
  • We propose a new technique for sidelobe suppression in orthogonal frequency division multiplexing (OFDM) systems. Sidelobe suppression is an essential technique to design OFDM based overlay system. The proposed technique is based on the combination of the multiple choice sequence (MCS) with the conventional windowing of OFDM signal in time domain. The MCS is choosing the one sequence which has lowest power in sidelobes from the produced set of sequences. The main advantage of proposed technique is that it fully utilizes the available bandwidth to transmit data. Simulation results show that by combining MCS with conventional windowing technique, the sidelobes in OFDM system can be significantly reduced