• Title/Summary/Keyword: overlapped allocation

Search Result 17, Processing Time 0.024 seconds

Contention Free Period Allocation by Axiomatic Bargaining Game in Multi-WBAN Overlapped Environment (중첩된 다수의 WBAN 환경에서 공리적 Bargaining Game를 이용한 비경쟁구간 할당방안)

  • Su, Wei-Dong;Shin, Sang-Bae;Cho, Jin-Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.246-248
    • /
    • 2012
  • In this paper, we recommend some game theoretical schemes try to get reliability transmission and resource allocation of the contention free period in overlapped WBAN(Wireless Body Area Net works) environment. Cooperative bargaining game is considered to guarantee a reliability conflict-free transmission. We study it by considering the priorty of device and the demand number of allocated timeslots in the CFP (Contention Free Period), and guarantee the least requested timeslots through bargaining between each user.

A Study on Localization System using 3D Triangulation Algorithm based on Dynamic Allocation of Beacon Node (비컨노드의 동적배치 기반 3차원 삼각측량 알고리즘을 적용한 위치인식 시스템에 대한 연구)

  • Lee, Ho-Cheol;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.378-385
    • /
    • 2011
  • The three-dimensional triangulation algorithm that the beacon nodes can be allocated to dynamically in not the experimental region but the practical region is suggested, and the performance of the localization system adapting the suggested algorithm is analyzed. The suggested algorithm adapts the computation method of the three dimensional point that the surfaces of three spheres overlapped, while the traditional triangulation algorithm adapts the computation method of the two dimensional point that three circles are overlapped in order to compute the distance between beacon nodes and mobile node that means a radius. In addition to this, to analyze the performance of the localization system adapting the suggested algorithm, first of all, the allocation layout of beacon nodes is made, and the allocation layout is modeled by selection of ten random distance values between mobile node and beacon nodes for computer simulation of the practical model. Next, the two dimensional coordinator of mobile node that is calculated by the suggested algorithm and the traditional triangulation algorithm is compared with each other. The localization measuring performance about three dimensional coordinator(z axis) of the suggested algorithm is also obtained by comparing with that of the practical model.

Resource Allocation Schemes for Legacy OFDMA Systems with Two-Way DF Relay (양방향 복호전달 릴레이를 사용하는 레거시 OFDMA 시스템에서의 자원 할당 기법)

  • Seo, Jongpil;Han, Chulhee;Park, Seongho;Chung, Jaehak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.593-600
    • /
    • 2014
  • OFDMA systems solves frequency selective fading problem and provides improved performance by optimal allocation of subcarriers and transmit power. Two-way relay systems provide improved spectral efficiency compared to that of the conventional half-duplex relay using bidirectional communications. In legacy OFDMA system such as WiBro, two-way DF relay utilization causes pilot re-assignment and impossibility of channel estimation and decoding at relay nodes by self-interference. In this paper, resource allocation schemes for legacy OFDMA systems with two-way DF relay are proposed. The proposed schemes allocate subcarriers considering destinations nodes which are connected to relay nodes as individual nodes which are directly connected to a base station. Subsequently, the proposed schemes compensate bandwidth loss due to orthogonal allocations by overlapped allocating unused subcarriers at other noes. Numerical simulations show that the proposed resource allocation schemes provide improved performance compared with orthogonal allocation.

A Comparative Performance Study for Compute Node Sharing

  • Park, Jeho;Lam, Shui F.
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.287-293
    • /
    • 2012
  • We introduce a methodology for the study of the application-level performance of time-sharing parallel jobs on a set of compute nodes in high performance clusters and report our findings. We assume that parallel jobs arriving at a cluster need to share a set of nodes with the jobs of other users, in that they must compete for processor time in a time-sharing manner and other limited resources such as memory and I/O in a space-sharing manner. Under the assumption, we developed a methodology to simulate job arrivals to a set of compute nodes, and gather and process performance data to calculate the percentage slowdown of parallel jobs. Our goal through this study is to identify a better combination of jobs that minimize performance degradations due to resource sharing and contention. Through our experiments, we found a couple of interesting behaviors for overlapped parallel jobs, which may be used to suggest alternative job allocation schemes aiming to reduce slowdowns that will inevitably result due to resource sharing on a high performance computing cluster. We suggest three job allocation strategies based on our empirical results and propose further studies of the results using a supercomputing facility at the San Diego Supercomputing Center.

Spatial Operation Allocation Scheme over Common Query Regions for Distributed Spatial Data Stream Processing (분산 공간 데이터 스트림 처리에서 질의 영역의 겹침을 고려한 공간 연산 배치 기법)

  • Chung, Weon-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2713-2719
    • /
    • 2012
  • According to increasing of various location-based services, distributed data stream processing techniques have been widely studied to provide high scalability and availability. In previous researches, in order to balance the load of distributed nodes, the geographic characteristics of spatial data stream are not considered. For this reason, distributed operations for adjacent spatial regions increases the overall system load. We propose a operation allocation scheme considering the characteristics of spatial operations to effectively processing spatial data stream in distributed computing environments. The proposed method presents the efficient share maximizing approach that preferentially distributes spatial operations sharing the common query regions to the same node in order to separate the adjacent spatial operations on overlapped regions.

OUTAGE PROBABILITY ANALYSIS OF OC-CDMA SYSTEM WITH IMPERFECT POWER CONTROL UNDER DIFFERENT VELOCITY USERS

  • Panya, Muangruen;Junnapiya, Somyot;Techotchawan, Amnouy;Kidakorn, Pongjai;Omsin, Somchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.480-483
    • /
    • 2004
  • This paper, we present the evaluation of outage probability on the SNR under the overlapped carrier allocation scheme in the reverse link with imperfect power control of a cellular CDMA system, which is base on using Gaussian approximation. In numerical results, the band limited pulse generated by square-root of raised consin pulse shaping filters (SRRC) of the transmitted signal is investigated and compared in conventional FD/CDMA and OC-CDMA of the outage probability. It will be also show that the outage probability can be improved by overlapping of carriers. We use error statistics to model the intra-cell interference and evaluate the impact of different mobiles velocity and number of resolvable paths on the system performance.

  • PDF

Contention Free Period Allocation by Nash Arbitration in Overlapped WBAN Environment (중첩된 WBAN 환경에서 내쉬중재를 이용한 비경쟁구간 할당 방안)

  • Shin, Sang-Bae;Cho, Jin-Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.221-224
    • /
    • 2011
  • 본 논문에서는 중첩 된 WBAN(Wireless Body Area Network) 환경에서 비경쟁 전송구간의 신뢰성 있는 전송을 위해 한정된 자원(비경쟁 전송구간)을 각각의 WBAN에게 할당하는 방안을 제안한다. 이를 위해 협동적 게임 이론(cooperative game theory)을 바탕으로 한정된 자원(비경쟁 전송구간)을 효율적이고 공평하게 할당 할 수 있도록 내쉬중재(Nash arbitration) 기법을 통한 자원 할당 방안을 살펴본다. 내쉬중재 협상해법을 통해 WBAN 간 비경쟁 전송구간의 충돌 없이 신뢰성 있는 전송을 보장한다. 또한, 각 WBAN의 비경쟁 전송 구간 내의 디바이스 우선순위와 할당받은 timeslot의 개수를 고려하여 전략 선택에 따른 형평성과 각 WBAN이 비경쟁전송 구간 내에 요구하는 최소한의 timeslot을 보장한다.

Comparison of two methodologies on spectrum sharing information for unlicensed use in the 6-GHz band

  • Um, Jungsun;Kim, Bongsu;Kim, Igor;Park, Seungkeun
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.531-542
    • /
    • 2022
  • With the increasing demand for unlicensed spectrum, several regulators have been opening up the 6-GHz band for unlicensed use while ensuring compliance with the technical requirement to avoid harmful interference in the existing primary services (PSs). In this paper, we present two methodologies, a channel-based method and a frequency-based method, which are applicable to a frequency coordination system that calculates the permissible transmit power in the channels or frequencies available to a secondary service (SS). In addition, we have demonstrated that the available transmit power of an SS can be maximized by adjusting the power allocation of the assigned resource units under the condition that the channel of the SS is partially overlapped with that of the PS. Based on the analysis results, it is suggested that it would be better to utilize the two methods selectively according to the operating channel conditions of the PS and the SS.

Game Theoretic Cache Allocation Scheme in Wireless Networks (게임이론 기반 무선 통신에서의 캐시 할당 기법)

  • Le, Tra Huong Thi;Kim, Do Hyeon;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.854-859
    • /
    • 2017
  • Caching popular videos in the storage of base stations is an efficient method to reduce the transmission latency. This paper proposes an incentive proactive cache mechanism in the wireless network to motivate the content providers (CPs) to participate in the caching procedure. The system consists of one/many Infrastructure Provider (InP) and many CPs. The InP aims to define the price it charges the CPs to maximize its revenue while the CPs compete to determine the number of files they cache at the InP's base stations (BSs). We conceive this system within the framework of Stackelberg game where InP is considered as the leader and CPs are the followers. By using backward induction, we show closed form of the amount of cache space that each CP renting on each base station and then solve the optimization problem to calculate the price that InP leases each CP. This is different from the existing works in that we consider the non-uniform pricing scheme. The numerical results show that InP's profit in the proposed scheme is higher than in the uniform pricing.

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.