• Title/Summary/Keyword: overflow conditions

Search Result 93, Processing Time 0.025 seconds

Analysis of Hydraulic Effect by River Dredging in a Meandering Channel (하도준설이 사행하천에 미치는 수리학적 영향 분석)

  • KIM, Tae-Hyeong;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.14-30
    • /
    • 2015
  • This paper attempted to analyze the hydraulic effects that the dredging can take as an alternative to reduce possible damages of flooding due to the overflow of river levee in meandering rivers, where riverbed aggradation, seepage and erosion may occur. In order to make a hydraulic analysis in a section of meandering rivers, a two-dimensional hydraulic analysis model, RMA-2, was selected. The GIS was applied to construct two-dimensional finite element grids to consider the hydraulic conditions before and after dredging. The water surface elevations, depths, velocities, and tractive forces were compared before and after the dredging. The difference of water surface elevation between the inside and outside of river was turned out to be the maximum value of 0.58m under the design flood condition. It could be evaluated that the tractive force at the bank decreased about 42 to 67% on average for all the sections. These results could give valuable information that the dredging of the stream channel at the meandering sections decreased the risk of overflow, seepage and erosion of the banks. The methodologies given in this study will contribute to mitigating the flood damages in the surrounding farmlands.

A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement (성능 향상을 위한 퍼지 논리 기반 DASH 알고리즘의 수정)

  • Kim, Hyun-Jun;Son, Ye-Seul;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.618-631
    • /
    • 2017
  • In this paper, we propose a modification of fuzzy logic based DASH adaptation algorithm(FDASH) for seamless media service in time-varying network conditions. The proposed algorithm selects more appropriate bit-rate for the next segment by the modification of the Fuzzy Logic Controller(FLC) and reduces the number of video bit-rate changes by applying Segment Bit-rate Filtering Module(SBFM). Also, we apply the Start Mechanism for clients not to watch the low quality videos in the very beginning stage of streaming service and add the Sleeping Mechanism to avoid any buffer overflow expected. Ultimately, we verified by using NS-3 Network Simulator that the proposed method shows better performance compared to FDASH. According to the experimental results, there is no buffer underflow/overflow within the limited buffer size, which is not guaranteed in FDASH on the other hand. Also, we confirmed that mFDASH has almost the same level of average video quality against FDASH and reduces about 50% of number of video bit-rate changes compared to FDASH in Point-to-Point network and Wi-Fi network.

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

Analysis of Flow Characteristics of the Improved-Pneumatic-Movable Weir through the Laboratory Experiments (실내실험을 통한 개량형 공압식 가동보의 월류흐름 특성 분석)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo;Ahn, Sang Jin
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1007-1015
    • /
    • 2014
  • This study investigates the discharge coefficient of Improved-Pneumatic-Movable (IPM) weir through the weir, a kind of movable weirs, to estimate much more accurate rating curves using laboratory flume experiments. The discharge coefficient ($C_d$) is from 0.613 to 0.634 by the stand-up angle of the weir. The upstream Froude Number ($F_{r1}$), relative crest length(${\xi}$), Headwater Ratio ($H_1/W$), the Overflow depth ratio of weir crest ($y_c/y_1$) was changed by the upstream. And the downstream Froude number ($F_{r2}$), the Overflow depth ratio of weir crest and Downstream Water depth ($y_c/y_2$) was changed by the downstream. The ratio of Downstream and Up and Downstream water Depth (${\Delta}y/y_2$) was found to be changed by both of the up and downstream flow. They considered the major influence variables and derived the Discharge coefficient Formula at this study. The Discharge coefficient of the Improved-Pneumatic-Movable (IPM) weir was settled by the height of the Movable weir, that is to say, it was settled by the flow conditions of upstream approach flow head and physical data according to the standing angle.

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF

New Sequence Number(SN*) Algorithm for Cell Loss Recovery in ATM Networks (ATM 네트워크에서 셀손실 회복을 위한 새로운 순서번호($SN^{\ast}$) 알고리즘)

  • 임효택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1322-1330
    • /
    • 1999
  • The major source of errors in high-speed networks such as Broadband ISDN(B-ISDN) is buffer overflow during congested conditions. These congestion errors are the dominant sources of errors in high-speed networks and result in cell losses. Conventional communication protocols use error detection and retransmission to deal with lost packets and transmission errors. As an alternative, we have presented a method to recover consecutive cell losses using forward error correction(FEC) in ATM(Asynchronous Transfer Mode) networks to reduce the problem. The method finds the lost cells by observing new cell sequence number($SN^{\ast}$). We have used the LI field together with SN and ST fields to consider the $SN^{\ast}$ which provides more correcting coverage than SN in ATM standards. The $SN^{\ast}$ based on the additive way such as the addition of LI capacity to original SN capacity is numbered a repeatedly 0-to-80 cycle. Another extension can be based on the multiplicative way such that LI capacity is multiplied by SN capacity. The multiplicative $SN^{\ast}$ is numbered in a repeatedly 0-to-1025 cycle.

  • PDF

Experimental Study on Pressures Changes on Infilling Soil and Geotextile Drain in Circular Acrylic Tube Structure (토사 주입과 배수 시 원형 아크릴 튜브 구조체의 압력 변화에 대한 실험적 연구)

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Lee, Jang-Baek;Park, Tae-Woong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.86-94
    • /
    • 2015
  • A series of injection and drainage test were conducted on an circular acrylic tube to investigate the pressure generated by the accumulated fill materials inside a circular acrylic tube structure. The acrylic tube was filled by means of gravity filling with a slurry material having an average water content of 700%. The water head during the filling process was 1.8m and the bottom pressure during initial filling was 20.18kPa. The recorded stress at the sides of the acrylic tube was 17.89kPa during the filling process and was reduced to 13.58kPa during the leaving process. Continuous drainage of the acrylic tube has greatly influenced the stresses around the tube structure. As the water is gradually allowed to overflow, the generated pressure at the topmost pressure sensor of the tube was reduced further to 2.17kPa. Eventually, the initially liquid state slurry material transforms into plastic state after water has dissipated and substantial soil particles are deposited in the acrylic tube. The final water content of the deposited silt inside the acrylic tube after the test was 42%. It was found that the state of stresses(geo-static earth pressures) in the acrylic tube was anisotropic rather than isotropic.

Performance Analysis of Error Control Techniques Using Forward Error Correction in B-ISDN (B-ISDN에서 Forward Error Correction을 이용한 오류제어 기법의 성능분석)

  • 임효택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1372-1382
    • /
    • 1999
  • The major source of errors in high-speed networks such as Broadband ISDN(B-lSDN) is buffer overflow during congested conditions. These congestion errors are the dominant sources of errors in 1high-speed networks and result in cell losses. Conventional communication protocols use error detection and retransmission to deal with lost packets and transmission errors. However, these conventional ARQ(Automatic Repeat Request) methods are not suitable for the high-speed networks since the transmission delay due to retransmissions becomes significantly large. As an alternative, we have presented a method to recover consecutive cell losses using forward error correction(FEC) in ATM(Asynchronous Transfer Mode)networks to reduce the problem. The performance estimation based on the cell discard process model has showed our method can reduce the cell loss rate substantially. Also, the performance estimations in ATM networks by interleaving and IP multicast service are discussed.

  • PDF

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

Analysis of Hydraulic Characteristics of Spillway using Hydraulic Model Experiments and Numerical Analysis (수리모형실험 및 수치해석을 통한 여수로 수리특성 분석)

  • Lee, Jong-Kyu;Lee, Jai-Hong;Kim, Joo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1818-1822
    • /
    • 2008
  • Generally, not only in order to design three dimensional hydraulic structures such a spillway and to investigate the hydraulic phenomena concerning hydraulic facilities, but also to grasp shape and stability, we simulate actuality phenomenon through hydraulic model experiments. However, it requires too much times, expense and space to perform hydraulic model experiments, as well as it is very difficult to measure reduced scale of actual hydraulic structures. Besides, surface tension can exert fair effect in experiment result, and occasionally an experiment of various case is impossible actually. Therefore, there is necessity to draw proper early result through numerical analysis, and if decide the case of a hydraulic model experiment through the numerical analysis and compare the result, finally economical and reasonable design hydraulic structures are available. This study performs numerical analysis of overflow spillway and an experimental study of hydraulic model tests to design the optimal spillway and suggest a better design to improve hydraulic conditions. From the measurements, revised designs for an hydraulic structure are suggested and consequent improvement effects by the new design are also investigated.

  • PDF