• Title/Summary/Keyword: overflow conditions

Search Result 93, Processing Time 0.022 seconds

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

Association Between Psychiatric Medications and Urinary Incontinence (정신과 약물과 요실금의 연관성)

  • Jaejong Lee;SeungYun Lee;Hyeran Ko;Su Im Jin;Young Kyung Moon;Kayoung Song
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Urinary incontinence (UI), affecting 3%-11% of males and 25%-45% of females globally, is expected to rise with an aging population. It significantly impacts mental health, causing depression, stress, and reduced quality of life. UI can exacerbate psychiatric conditions, affecting treatment compliance and effectiveness. It is categorized into transient and chronic types. Transient UI, often reversible, is caused by factors summarized in the acronym DIAPPERS: Delirium, Infection, Atrophic urethritis/vaginitis, Psychological disorders, Pharmaceuticals, Excess urine output, Restricted mobility, Stool impaction. Chronic UI includes stress, urge, mixed, overflow, functional, and persistent incontinence. Drug-induced UI, a transient form, is frequently seen in psychiatric treatment. Antipsychotics, antidepressants, and other psychiatric medications can cause UI through various mechanisms like affecting bladder muscle tone, altering nerve reflexes, and inducing other conditions like diabetes or epilepsy. Specific drugs like lithium and valproic acid have also been linked to UI, though mechanisms are not always clear. Managing UI in psychiatric patients requires careful monitoring of urinary symptoms and judicious medication management. If a drug is identified as the cause, options include discontinuing, reducing, or adjusting the dosage. In cases where medication continuation is necessary, additional treatments like desmopressin, oxybutynin, trihexyphenidyl, or amitriptyline may be considered.

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.