• Title/Summary/Keyword: overconsolidated soil

Search Result 33, Processing Time 0.021 seconds

Study on Anisotropy of Normally Consolidated Clay Soils (정규압밀점성토의 이방성에 관한 연구)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 1995
  • In situ clay soils with Ko condition have anisotropic characteristics, varying the response according to the principal stress direction upon loading. But because of their practicality and simplicity, consolidated isotropic undrained compression tests are commonly used in practice to determine the behavior of cohesive soils. In this study to investigate the anisotropic characteristics and the effects of consolidation stress states on the response of normally consolidated clay soils during shearing, triaxial compression and extension tests after consolidating the undisturbed clay soil samples, which are obtained as a block sample to normalized consolidation states under isotropic or Ko state, were carried out. As a result of tests, the anisotropy of the undrained strength was confirmed. Comparing the soil responses between isotropic and Ko consolidation, the undrained strength by isotropic consolidation is overestimated because of its higher mean consolidation pressure. And isotropic consolidation reduces the anisotropy of soil response and influences on the stress-strain behavior and pore pressure response because the animotropic soil structure is partially collapsed during isotropic consolidation process. Also, OCR in overconsolidated soils is decreased by isotropic consolidatiorL Friction angle in eztension is higher than that in compression, but regression analysis shows that friction angle with cohesion in extension is almost the same as that without cohesion in compresslon.

  • PDF

A Prediction of Shear Behavior of the Weathered Mudstone Soil Using Dynamic Neural Network (동적신경망을 이용한 이암풍화토의 전단거동예측)

  • 김영수;정성관;김기영;김병탁;이상웅;정대웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.123-132
    • /
    • 2002
  • The purpose of this study is to predict the shear behavior of the weathered mudstone soil using dynamic neural network which mimics the biological system of human brain. SNN and RNN, which are kinds of the dynamic neural network realizing continuously a pattern recognition as time goes by, are used to predict a nonlinear behavior of soil. After analysis, parameters which have an effect on learning and predicting of neural network, the teaming rate, momentum constant and the optimum neural network model are decided to be 0.5, 0.7, 8$\times$18$\times$2 in SU model and 0.3, 0.9, 8$\times$24$\times$2 in R model. The results of appling both networks showed that both networks predicted the shear behavior of soil in normally consolidated state well, but RNN model which is effective fir input data of irregular patterns predicted more efficiently than SNN model in case of the prediction in overconsolidated state.

Analysis on the Physical Properties of Gwangyang Marine Clay (광양지역 해성점토의 물리적 특성 분석)

  • Heo, Yol;Kwan, Seonwok;Gang, Seokberm;Park, Seonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.63-74
    • /
    • 2010
  • Normally consolidated and slightly overconsolidated soft clay layer is widely distributed in the south coast of Korea. To ensure the efficient and economical construction design of any structure to be built on this soft soil, exhaustive studies related to geotechnical and physical engineering properties are required. In this study, the relationship of the physical properties of southern Gwangyang marine clay in the Korea Peninsula were examined, including natural water content, specific gravity, total unit weight, initial void ratio, liquid limit, plastic limit, and physical properties of activity and soil parameters. For the parameter relationship analysis, the latest relatively reliable data on the large harbor construction work were used, optimum values were deducted with linear regression and non-linear regression between soil parameters, water content or initial void ratio appears to be very large. Moreover, in the linear and involution pattern regression, equal coefficient of determination appeared. The relationship of the different parameters was shown to be excellent in the non-linear regression of involution equation and exponential equation pattern compared with the findings of linear regression analysis.

A Constitutive Model for Soil Using Mohr-Coulomb Criteria (Mohr-Coulomb식(式)을 사용한 흙의 구성(構成)모델)

  • Lee, Hyung Soo;Lee, Byung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1405-1415
    • /
    • 1994
  • The soil on the behavior of the nonlinear elastic work-hardening plasticity has a variety of stress paths due to the state of soil and the test conditions. The soil with a specific volume ${\upsilon}$ in principal stress space (${\sigma}_1$, ${\sigma}_2$, ${\sigma}_3$, and ${\upsilon}$v) displays the shape of an irregular hexagonal pyramid with an end cap. With variations of ${\upsilon}$ the size of the cap is changed but its shape remains unchanged and the movement of the cap is controlled by the increase or decrease of the plastic volumetric strain. By reflecting such a property of soil various cap models have been developed by researchers. In this thesis, a constitutive model of soil with a combination of the nonlinear elastic work-hardening plastic cap and the failure surfaces of Mohr-Coulomb (M-C cap model) has been developed. According to the the results of analyses using the work-hardening plastic cap model, the normally consolidated soil under shearing has experienced the work-hardening and plastic flow (movement of the cap). But in the shearing of the overconsolidated soil the elastic behavior is shown until the stress path has reached the failure surface and the cap does not move.

  • PDF

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

Consolidation Characteristics of Songdo Area in Incheon (인천 송도지역 지반의 압밀특성)

  • Kim, Dong-Hee;Hong, Sung-Jin;Lee, Woo-Jin;Ko, Seong-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.21-33
    • /
    • 2010
  • In this paper, the consolidation and the permeability characteristics of Songdo were evaluated based on the laboratory and field tests. The test results indicate that silty clay layer above approximately E.L-15 m are consolidation layer, and sand layers embedded in consolidation layers are drainage layers. Consolidation layer was overconsolidated state before the reclamation work; however, it transferred to normalized state after the reclamation work. In addition, the average and the range of consolidation properties and magnitude of anisotropy of coefficient of consolidation were evaluated according to the soil types such as clay, silty, and clayey silt since these properties are sensitive to soil types. These analysis results can be used as preliminary design parameters of consolidation and permeability m Songdo area.

Estimation of Consolidation in Soft Clay by Field Velocity Probe (Field Velocity Probe를 활용한 연약지반 압밀 평가)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.511-517
    • /
    • 2013
  • The Field Velocity Probe (FVP) has been widely applied to determine the various characteristics of soils. This study seeks to estimate soil consolidation characteristics using an FVP and to increase its application in the field. The specimens were extracted from depths of 3 and 6 m at the study site, an area of soft clay in Incheon. In laboratory testing, the specimens were placed in an improved oedometer cell to measure shear wave velocity, and statistical analysis was performed to compare the results of effective stress and shear wave velocity. FVP enables increased resolution in the field because it measures the shear wave velocity every 20 cm. To estimate the condition of consolidation, we compared the results of shear wave velocities between those obtained in the laboratory and those in the field. The field conditions are used to analyze overconsolidated and normally consolidated soils at depths of 3 and 6 m, respectively. The results show that FVP is a suitable method for estimating the degree of consolidation.

Estimations of Spatial Variability of Cone Resistance Using Geostatistical Method (지구통계학적 기법을 이용한 콘저항치의 공간적 변화의 평가)

  • ;Michael, W. O'Neill
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.19-34
    • /
    • 1997
  • Applications of geostatistical method to cone penetrometer data have been performed at the overconsolidated clay site. Randomlylocated 28 electronic CPT soundings (Location A) and consistently-located 38 CPT soundings(Location B) are investigated geostatistically. Variograms for Locations A and B have been developed for q, from the CPT data by using "kriging" principles, which establish the horizontal and vertical correlation distrances at this site. These vertical and horizontal correlation distances can be used to optimal sampling design, where, if one needs to compare two test results, sampling must be made within these vertical and horizontal correlation distances. Analysis of the variograms indicated that the geological formation between two locations are not very different in both vertical direction and horizontal direction.direction.

  • PDF