• Title/Summary/Keyword: overall bending capacity

Search Result 34, Processing Time 0.017 seconds

Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis (이차원 수치해석에 의한 강지보 성능을 고려한 숏크리트 라이닝의 부재력 평가 방법)

  • Ha, Tae-Wook;Kim, Dae-Young;Shin, Young-Wan;Yang, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.269-282
    • /
    • 2008
  • In general, the effects of steel ribs are not considered in the numerical analysis of tunnel design. However, attempts have been increased recently to consider these effects in the analysis of shallow tunnels in soft ground, based on the fact that the steel ribs embedded in the shotcrete take a role to support some portion of the redistributed load due to excavation. In such analyses, the steel ribs can be considered in four different methods: (1) a conventional method where the steel ribs are not considered, (2) a method using the equivalent composite cross section in which the bending moment of shotcrete is not considered, (3) a method using the equivalent composite cross section in which both the compressive stress and the bending moment for the shotcrete and steel rib are considered, and (4) a method using beam elements for the shotcrete and the steel rib, respectively. These methods are adopted in the numerical analysis using FLAC 2D to investigate stresses of both the shotcrete and the steel rib. The overall results show that the analyses are more practical and economical when the effects of steel rib are considered fer the methods (2), (3), and (4). Since the results of those analyses considering steel rib capacity may be different according to the ground condition, it will be necessary to consider the appropriate method among them in accordance with design conditions.

  • PDF

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar (강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰)

  • Yang Dong-Suk;Hwang Jeong-Ho;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.171-177
    • /
    • 2005
  • Even though the cost associated with the repair and rehabilitation of existing structures are rapidly increasing, vast number of the repaired and rehabilitated structures do not function properly as expected during their remaining service lives. This paper focused on the flexural behavior of reinforced concrete slabs repaired and reinforced by PS strand and polymer mortar in the tension face. The slabs have the size of 700${\times}120{\times}$2200 m and 700${\times}120{\times}$1300 mm. Variables of experiment were space of strengthening, chipping, the number of strand, the kind of mortar in this experimental study. Attention is concentrated upon overall bending capacity, deflection, ductility and failure mode of repaired and reinforced slabs. Test results show that deflection of repaired and reinforced slabs reduced to approximately $40 \%$ comparison to standard slabs. Boundary cracking of chipping slab started ultimate load afterward. Concrete-mortar interface cracked 64.5 kN in repaired slab with AP mortar and 36.0 kN in repaired slab with general polymer mortar. Reinforcement effect increased with reducing space of strand. Also, Reinforcement effects are more by strand than by polymer mortar.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.