• Title/Summary/Keyword: overall bending capacity

검색결과 35건 처리시간 0.022초

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • 제28권2호
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

Effect of RBS on seismic performance of prefabricated steel-concrete composite joints

  • Zhen Zhu;Haitao Song;Mingchi Fan;Hao Yu;Chenglong Wu;Chunying Zheng;Haiyang Duan;Lei Wang
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.405-418
    • /
    • 2024
  • To study the influence of different reduced beam section (RBS) on the mechanical performance of modular boltedwelded hybrid connection joints (MHCJs), this article uses ABAQUS to establish and verify the finite element model (FEM) of the test specimens on the basis of quasi-static test research. Based on, 14 joint models featuring different RBS are devised to evaluate their influence on seismic behavior, such as joint failure mode, bending moment (M)-rotation angle (θ) curve, ductility, and energy consumption. The results indicate that when the flange and web are individually weakened, they alleviate to some extent the concentrated stress of the core module (CM) and column end steel skeleton in the joint core area, but both increase the stress on the flange connecting plate (FCP). At the same time, the impact of both on seismic performance such as bearing capacity, stiffness, and energy consumption is relatively small. When simultaneously weakening the flange and web of the steel beam, forming plastic hinges at the weakened position of the beam end, significantly alleviated the stress concentration of the CM and the damage at the FCP, improving the overall deformation and energy consumption capacity of joints. But as the weakening size of the web increases, the overall bearing capacity of the joint shows a decreasing trend.

Perforated TWCF steel beam-columns: European design alternatives

  • Baldassino, Nadia;Bernardi, Martina;Bernuzzi, Claudio;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.701-715
    • /
    • 2020
  • Steel storage racks are lightweight structures, made of thin-walled cold-formed members, whose behaviour is remarkably influenced by local, distortional and overall buckling phenomena, frequently mutually combined. In addition, the need of an easy and rapid erection and reconfiguration of the skeleton frame usually entails the presence of regular perforations along the length of the vertical elements (uprights). Holes and slots strongly influence their behaviour, whose prediction is however of paramount importance to guarantee an efficient design and a safe use of racks. This paper focuses on the behaviour of isolated uprights subjected to both axial load and bending moments, differing for the cross-section geometry and for the regular perforation systems. According to the European standards for routine design, four alternatives to evaluate the bending moment-axial load resisting domains are shortly discussed and critically compared in terms of member load carrying capacity.

Influence of the axial force on the behavior of endplate moment connections

  • Ghassemieh, Mehdi;Shamim, Iman;Gholampour, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.23-40
    • /
    • 2014
  • In this article, using finite element method of analysis (FEM), behavior of the endplate moment connection subjected to axial force and bending moment is investigated. In the FEM model, all the nonlinear characteristics such as material, geometry, as well as contact have been included. First, in order to verify the numerical model of the connection, an analysis of the endplate moment connection conducted without the application of the axial force. Results obtained from FEM indicating a close and good correlation with the experimental results. Then to investigate the influence of the axial forces, the connections subjected to axial forces as well as the bending moment are analyzed. To observe the overall effect of these actions, the momentaxial force interaction diagrams are drawn. It is observed that the presence of axial force even in a small value can change the behavior of the connection significantly. It is also shown that the axial forces can alter the failure mode of the connection; and therefore it could result in a different than the predicted moment capacity of the connection.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.

A Study on the Structure and lateral Loading Capacity of Wooden Frame of Ancient Commoner's House (고대 민가의 구조 및 목조 프레임의 수평내력에 관한 연구)

  • 서정문;최인길;전영선;이종림;신재철;허택영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제1권2호
    • /
    • pp.31-37
    • /
    • 1997
  • Structural details of the three-bay-straw-roof house which was the most common form of residence as a commoner's house during ancient period are suggested. Wooden frames are used in the house. The typical form of joint used is Sagaemachum. The static lateral loading capacity of the frames is evaluated through the test on full scale models. The effects of joint type at the column head and wooden lattice on the lateral loading capacity and the failure modes of frames are analyzed. The ultimate lateral loading capacity and displacement of the ordinary frame at failure are 1.090 N and 400 mm(1/6rad), respectively. These values for the frame with high column are 4,160 N and 250 mm(1/9.6rad), respectively. The behavior of joint at column head controls the overall lateral loading capacity of the frame and shows very large nonlinearity. The general failure modes of joint for an ordinary frame and a frame with high column are shear and bending failure at the branches of Sagaemachum, respectively.

  • PDF

Shape Design and Performance Evaluation of FRP Box-type Stiffener For the Application of RC Structure (철근콘크리트용 FRP Box 휨 보강재의 형상 설계 및 거동 평가)

  • Kwon, Min-Ho;Jung, Woo-Young;Spacone, Enrico
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • 제4권1호
    • /
    • pp.40-46
    • /
    • 2013
  • This paper presents the design, fabrication and performance of a reinforced concrete beam strengthened by GFRP box plate and its possibility for structural rehabilitations. The load capacity, ductility and failure mode of reinforced concrete structures strengthened by FRP box plate were investigated and compared with traditional FRP plate strengthening method. This is intended to assess the feasibility of using FRP box plate for repair and strengthening of damaged RC beams. A series of four-point bending tests were conducted on RC beams with or without strengthening FRP systems the influence of concrete cover thickness on the performance of overall stiffness of the structure. The parameters obtained by the experimental studies were the stiffness, strength, crack width and pattern, failure mode, respectively. The test yielded complete load-deflection curves from which the increase in load capacity and the failure mode was evaluated.

A Study on the Behavior Evaluation & Box Shape Designs of FRP Stiffeners (FRP 보강재의 Box 형상 설계 및 거동 평가에 관한 연구)

  • Jung, Woo-Young;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.165-168
    • /
    • 2008
  • This paper presents the design, fabrication and performance of a reinforced concrete beam strengthened by GFRP box plate and its possibility for structural rehabilitations. The load capacity, ductility and failure mode of reinforced concrete structures strengthened by FRP box plate were investigated and compared with traditional FRP plate strengthening method. This is intended to assess the feasibility of using FRP box plate for repair and strengthening of damaged RC beams. A series of four-point bending tests were conducted on RC beams with or without strengthening FRP systems the influence of concrete cover thickness on the performance of overall stiffness of the structure. The parameters obtained by the experimental studies were the stiffness, strength, crack width and pattern, failure mode, respectively. The test yielded complete load-deflection curves from which the increase in load capacity and the failure mode was evaluated.

  • PDF