• Title/Summary/Keyword: over-current

Search Result 5,952, Processing Time 0.035 seconds

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF

Effect of Resistance Spot Welding Parameters on AA1100 Aluminum Alloy and SGACD Zinc coated Lap Joint Properties

  • Chantasri, Sakchai;Poonnayom, Pramote;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.153-160
    • /
    • 2015
  • This article is aimed to study the effects of resistance spot welding (RSW) on the lap joint properties between AA1100 aluminum alloy and SGACD zinc coated steel and its properties. The summarized experimental results are as follows. The summarized experimental results are as follows. The optimum welding parameters that produced maximum tensile shear strength of 2200 N was a welding current of 95 kA, a holding time of 10 cycles, and a welding pressure of 0.10 MPa. Increasing of welding current, increased the tensile shear strength of the joint and also increased the amount of aluminum dispersion at the joint interface. The lap joint of steel over the aluminum (Type I) showed the higher joint tensile shear strength than a lap joint of aluminum over the steel (Type II). The indentation depth and the ratio of the indentation depth to the plate thickness decreased when the welding current was increased in the type I lap joint and also decreased when the welding current was decreased in the type II lap joint. The interface structure showed the formation of the brittle $FeAl_3$ intermetallic compound that deteriorated the joint strength.

Electromagnetic Transient Program Modeling for Analysis of Switching Over-Voltage on Shunt Reactor (분로리액터 개폐 과전압 해석을 위한 EMTP 모델링)

  • Oh, SeungRyle;Jun, InYoung;Han, KiSun;Kang, JiWon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.393-397
    • /
    • 2020
  • Shunt reactor, a facility for reactive power compensation, is switched several times a day depending on the load pattern. When the circuitbreaker opens the shunt reactor over-voltage is generated by several factors which degrade the insulating performance of internal parts of the circuit-breaker and cause severe voltage stress on the equipment in the power system. Transient phenomenon occurring during the switching of shunt reactor are available in laboratories that verify the performance of the circuit-breaker by simulating the power system. However, it is difficult to measure the transient phenomenon that occurs during actual operation in actual power system due to many limitations. Therefore, this paper deals with the modeling using EMTP to analyze the reignition and current chopping which causes more severe transient recovery voltage in the small inductive current breaking in actual power systems. In addition, this paper analyzes the main phenomenon that cause circuit-breaker failure in opening shunt reactor using EMTP model.

The Effects of Transcranial Direct Current Stimulation on Balance, Fall Efficacy, and Fall-Related Fitness in Stroke Patient's through a Virtual Reality Rehabilitation Program (경두개 직류전류자극과 가상현실재활프로그램을 적용한 뇌졸중환자의 균형과 낙상관련 체력 및 낙상효능감에 미치는 영향)

  • An, Taegyu;Kwon, Hyukchul;Lee, Sunmin;Kim, Hwan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Purpose : This study assessed the effects of transcranial direct current stimulation (tDCS) on balance, fall efficacy, and fall-related fitness in stroke patients, using a cohort of 30 stroke patients divided into two groups. Methods : The experimental group (was given transcranial direct current stimulation in a virtual reality program) and the control group was given false tDCS in virtual reality. there were 15 patients in each group, receiving appropriate treatment over 30 sessions (30 minutes per session per week over a six-week period). In order to assess the change in balance before and after the intervention, the Berg Balance scale was utilized. Fall efficacy was evaluated using the Korean Falls Efficacy Scale for the Elderly (FES-K), The following exercises were performed by patients to assess fall-related fitness : sitting down in a chair and standing up : walking a 244 cm round= trip, and standing on one foot. Results : After the intervention, the experimental group exhibited significantly increased fall efficacy and fall-related fitness, while the control group exhibited no change. These findings suggest that tDCS has positive effects on balance, fall efficacy, and fall-related fitness in stroke patients. Conclusion : Using tDCS as an intervention would bring positive effects on balance, fall efficacy, and fall-related fitness in stroke patients undergoing rehabilitation.

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.

Air-pressure Control of Diaphragm using Variable Frequency Current Control (가변 주파수 전류 제어에 의한 다이어프램의 압력제어)

  • Lim, Geun-Min;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.258-265
    • /
    • 2011
  • This paper presents a variable frequency current control scheme for the air-pressure control of diaphragm. Differ from the conventional air-pressure control of diaphragm, the proposed method uses a single-phase inverter to control the phase current and frequency. The phase current is adjusted to keep the reference air-pressure of the diaphragm. And the current frequency is changed to reduce the mechanical vibration. In order to smooth change of the operation with a constant air-pressure, the frequency is changed according to the voltage reference from the current controller. When the phase current is satisfied to the constant air-pressure, the current frequency is increased to reduce the vibration of the diaphragm. When the reference voltage to keep the phase current is over than the set value, the current frequency is decreased to keep the air-pressure. The proposed control scheme is verified by the experimental test of a commercial diaphragm.

A Study on the Fire Risk of High-voltage Cables for Electrical Vehicles (전기차용 고전압 케이블의 화재 위험성에 관한 연구)

  • Sin Dong Kang;Ye Jin Park;Si Hyun Kim;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.8-14
    • /
    • 2023
  • This study presents the characteristics of short circuits (SCs) caused by excessive currents in high-voltage cables used in electric vehicles and emphasizes the need to calculate the cross-sectional areas of these cables according to the SC current. Three direct current power supplies were connected in parallel to test the SC characteristics caused by excessive currents, and a timer and a magnetic contactor were used to deliver the conduction time and SC current. A circular infrared-radiation heater was used to test the temperature-dependent SC characteristics, a thermocouple was used to measure the temperature, and a shunt resistor was used to measure the current. As the SC current increased, the fusing time of the cable decreased. Additionally, a high-voltage cable (with an area of 16 mm2 ) used in electric vehicles fused when a current (approximately equal to 55 times the allowable current) flowed for 0.2 s (operating time of the protective device). When the SC current is 10 kA, the cable may fuse during the operating time of the protective device, thus creating a fire hazard. In electric vehicles, the size of the SC current increases in proportion to the capacity of the battery. Thus, the cross-sectional areas of the cables used should be calculated accordingly, and cable operations should be properly coordinated with the surrounding protective devices.

Implementation of Low Noise Current Sensor using Low Pass FIR Filter (저역통과 FIR필터를 이용한 저잡음 전류 센서 구현)

  • Kim, Jeong-Hwan;Lee, Seong-Jin;Choi, Yong-geon;Han, Seong-Gye;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.499-502
    • /
    • 2017
  • The needs of efficient electricity use and current measurement for electrical safety have been increased. Hence, the current sensor is used, especially non-contact current sensor which can measure the current without blocking the circuit using hall effect. However, the accurate measuring of the current sensor is inhibited due to the inflow of various noises in this current sensor. In this article, a stronger current sensor against the noise is proposed using low pass FIR filter to the existing current sensor. FIR filter was designed to block the range over the certain frequency at the output of the current sensor to eliminate the external noises, and so on. As a result, more accurate and close measurements were possible.

  • PDF

A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

  • Han, Seunghak;Nam, Seokho;Lee, Jeyull;Song, Seunghyun;Jeon, Haeryong;Baek, Geonwoo;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2017
  • Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

Ice mass balance over the polar region and its uncertainty (극지방 빙하량 변화 (ice-mass balance) 관측과 에러 분석)

  • Seo, Ki-Weon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.63-72
    • /
    • 2007
  • Current estimates of the ice-mass balance over the Greenland and the Antarctica using retrievals of time-varying gravity from GRACE are presented. Two different GRACE gravity data, UTCSR RL01 and UTCSR RL04, are used for the estimates to examine the impact of the relative accuracy of background models in the GRACE data processing for inter-annual variations of GRACE gravity data. In addition, the ice-mass balance is appraised from the conventional GRACE data, which represents global gravity, and the filtered GRACE data, which isolates the terrestrial gravity effect from GRACE gravity data. The former estimate shows that there exists similar negative trends of ice-mass balance over the Greenland from UTCSR RL01 and UTCSR RL04 while the time series from the both GRACE data over the Antarctica differ significantly from each other, and no apparent trends are observed. The result for the Greenland from the latter calculation is similar to the former estimate. However, the latter calculation presents positive trends of ice-mass balance for the Antarctica from both GRACE data. These results imply that residual oceanic geophysical signals, particularly for ocean tides, significantly corrupt the ice-mass estimate over the Antarctica as leakage error. In addition, the spatial alias of GRACE is likely to affect the ice-mass balance because the spatial spectrum of ocean tides is not conserved via GRACE sampling, and thus ocean tides contaminate terrestrial gravity signal. To minimize the alias effect, I suggest to use the combined gravity models from GRACE, SLR and polar motion.

  • PDF