• 제목/요약/키워드: ovarian cells

검색결과 474건 처리시간 0.026초

Upregulation of Fas in epithelial ovarian cancer reverses the development of resistance to Cisplatin

  • Fan, Yang;Wang, Long;Han, Xuechuan;Liu, Xueqin;Ma, Hongyun;Ding, Yonghui
    • BMB Reports
    • /
    • 제48권1호
    • /
    • pp.30-35
    • /
    • 2015
  • This study was to investigate the role of Fas in the development of Cisplatin-resistant ovarian cancer. On the cellular level, Fas expression was significantly reduced in Cisplatin resistant A2780 (A2780/CP) cells compared with A2780 cells. Fas silence with siRNA would promote tumor cell lines proliferation, facilitate tumor cell cycle transition of G1/S, prevent cell apoptosis, and promote cell migration. Expression of drug resistance gene was negatively correlated to Fas. In nude mice metastasis model of human ovarian carcinoma by subcutaneous transplantation, after Ad-Fas injected intratumorly, we found that upregulation of Fas could inhibit transplantation tumor tissue growth and reduce the expression of drug resistance gene. Our results indicated that upregulation of Fas in epithelial ovarian cancer reversed the development of resistance to Cisplatin. In conclusion, our findings suggested that Fas might act as a promising therapeutic target for improvement of the sensibility to Cisplatin in ovarian cancer.

Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling

  • Xia, Rong;Chen, Sun-Xiao;Qin, Qin;Chen, Yan;Zhang, Wei-Wei;Zhu, Rong-Rong;Deng, An-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.667-671
    • /
    • 2016
  • Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권8호
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Apicidin Induces Apoptosis via Cytochrome c-Mediated Intrinsic Pathway in Human Ovarian Cancer Cells

  • Ahn, Mee-Young;Na, Yong-Jin;Lee, Jae-Won;Lee, Byung-Mu;Kim, Hyung-Sik
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.17-24
    • /
    • 2009
  • Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents that inhibit cancer cell growth in vitro and in vivo. Previous report has shown that apicidin inhibited SK-OV-3 cells proliferation and down-regulation of cyclin B1 and CDK1, and up-regulation of $p21^{WAF1}$ and p27. However, the mechanism of apicidin-mediated apoptotic cell death is not clearly understood. For this study, we investigated the mechanism of apoptotic pathway induced by apicidin in human ovarian cancer cell. We found that SK-OV-3 cells treated with apicidin caused an increase in the percentage of cells in the G2/M phase, which preceded apoptosis characterized by the appearance of cells with sub-G1 population. To further investigate the mechanism of apoptosis induction by apicidin, we measured TUNEL assay, poly-ADP ribose polymerase (PARP) cleavage, and caspase activity in SK-OV-3 cells treated with apicidin for 48 h. Apicidin significantly enhanced apoptosis as measured by TUNEL positive apoptotic cells, PARP cleavage, and increased Bax/Bcl-2 ratio. Induction of apoptosis was confirmed by the release of cytochrome c to cytosol. Our data suggest that apicidin-induced apoptosis in SK-OV-3 cells was accompanied by caspase-3 activation and the increase in Bax/Bcl-2 ratio. These data suggest that apicidin may be effective in the treatment of ovarian cancer through activation of intrinsic apoptotic pathway.

Regulation and 3 dimensional culture of tertiary follicle growth

  • Cheon, Yong-Pil
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권3호
    • /
    • pp.95-106
    • /
    • 2012
  • It has been revealed that multiple cohorts of tertiary follicles develop during some animal estrous cycle and the human menstrual cycle. To reach developmental competence, oocytes need the support of somatic cells. During embryogenesis, the primordial germ cells appear, travel to the gonadal rudiments, and form follicles. The female germ cells develop within the somatic cells of the ovary, granulosa cells, and theca cells. How the oocyte and follicle cells support each other has been seriously studied. The latest technologies in genes and proteins and genetic engineering have allowed us to collect a great deal of information about folliculogenesis. For example, a few web pages (http://www.ncbi.nlm. nih.gov; http://mrg.genetics.washington.edu) provide access to databases of genomes, sequences of transcriptomes, and various tools for analyzing and discovering genes important in ovarian development. Formation of the antrum (tertiary follicle) is the final phase of folliculogenesis and the transition from intraovarian to extraovian regulation. This final step coordinates with the hypothalamic-pituitary-ovarian axis. On the other hand, currently, follicle physiology is under intense investigation, as little is known about how to overcome women's ovarian problems or how to develop competent oocytes from in vitro follicle culture or transplantation. In this review, some of the known roles of hormones and some of the genes involved in tertiary follicle growth and the general characteristics of tertiary follicles are summarized. In addition, in vitro culture of tertiary follicles is also discussed as a study model and an assisted reproductive technology model.

α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells

  • Ittiudomrak, Teeranai;Puthong, Songchan;Roytrakul, Sittiruk;Chanchao, Chanpen
    • Toxicological Research
    • /
    • 제35권2호
    • /
    • pp.167-179
    • /
    • 2019
  • Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, ${\alpha}$-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. ${\alpha}$-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with ${\alpha}$-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas ${\alpha}$-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in ${\alpha}$-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both ${\alpha}$-mangostin and apigenin arrested the cell cycle at the $G_2/M$ phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and ${\alpha}$-mangostin-treated SKOV-3 cells, respectively. ${\alpha}$-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and ${\alpha}$-mangostin likely being involved with inflammation.

Saxatilin, a Snake Venom Disintegrin, Suppresses TNF-α-induced Ovarian Cancer Cell Invasion

  • Kim, Dong-Seok;Jang, Yoon-Jung;Jeon, Ok-Hee;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.290-294
    • /
    • 2007
  • Saxatilin is a disintegrin known to inhibit tumor progression in vivo and in vitro. The role of saxatilin in cancer cell invasion was examined by a modified Boyden chamber assay in MDAH 2774 human ovarian cancer cell line. Saxatilin (50 nM) significantly inhibited cancer cell invasion induced by tumor necrosis factor-$\alpha$ (TNF-a$\alpha$). Saxatilin also reduced MMP-9 mRNA levels in cancer cells in a dosedependent manner. In addition, TNF-$\alpha$-induced MMP-9 activity was reduced by the treatment of saxatilin. These results indicate that transcriptional regulation of MMP-9 is an important mechanism for the tumor suppressive effects of saxatilin in MDAH 2774 human ovarian cancer cells.

자궁경부.질도말로 진단된 난소의 장액성 낭성암종 1예 (A Case of Ovarian Serous Cystadenocarcinoma Diagnosed by Cervicovaginal Smear)

  • 박혜림;남주현;박영의
    • 대한세포병리학회지
    • /
    • 제3권2호
    • /
    • pp.104-110
    • /
    • 1992
  • Although there have been a few reports of cases in which cancer cells of extrauterine origin were observed in vaginal smears, such findings are relatively uncommon. We recently experienced a case of ovarian serous cystadenocarcinoma diagnosed by cervicovaginal smear in a 56-year-old woman in routine work-up of carcinoma peritonei. The cellular features were several scattered cellular clusters of adenocarcinoma cells in clear background without tumor diathesis. Psammoma body was not present. Exploratory laparotomy confirmed the diagnosis of bilateral ovarian serous cystadenocarcinoma with multiple metastases.

  • PDF

ErbB 수용체를 이용한 난소암세포 표적 유전자치료 벡터의 개발 (Development of the Gene Therapy Vector for Targeting Ovarian Cancer Cells through ErbB Receptors)

  • 정인실;방성호
    • 미생물학회지
    • /
    • 제47권1호
    • /
    • pp.1-6
    • /
    • 2011
  • 암의 유전자치료에서 암세포로의 선택적 유전자전달 매체의 부족은 치료효과의 감소를 야기하는 문제이다. 본 연구에서는 난소암 유전자치료의 효율을 높이기 위한 목적으로 난소암세포로 선택적인 유전자전달을 하도록 개량된 아데노바이러스 벡터를 제조하고, 그 효율성을 난소암세포주를 이용하여 조사하였다. 난소암세포에 과다발현하는 분자인 ErbB receptor를 표적하도록 아데노바이러스 외피단백질 fiber에 ErbB receptor에 대한 ligand인 heregulin으로부터 유래한 펩티드를 부착하였다. 53개의 아미노산으로 구성된 외부 펩티드를 fiber에 부착하였을 때 바이러스 감염에 중요한 기능을 하는 fiber 삼량체 구조 형성에 영향을 미치지 않았다. Fiber를 조작한 개량 아데노바이러스는 야생형 fiber를 가진 1세대 아데노바이러스 벡터에 비해 선택적으로 난소암으로 유전자를 전달하는 비율이 증가하였다. 특히 항암제에 저항성을 가진 난소암세포주 OVCAR3에서 유전자전달 효율이 약 5배 증가되었다. 따라서 난소암의 유전자치료에서 개량된 아데노바이러스로 치료 유전자를 전달하면 치료의 효율성을 향상시킬 수 있을 것이다.

인간난포에서 Apoptosis 관련 단백질 및 Apoptotic 세포의 면역학적 발현 (The Immunologic Expression of Apoptosis Related Proteins and Apoptotic Cells in Human Ovarian Follicles)

  • 박성록;이병석;양우익;김종화;박병주;박기현;조동제;송찬호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제29권3호
    • /
    • pp.195-200
    • /
    • 2002
  • Objective : To investigate the expression of apoptosis related proteins and apoptotic cells on the human ovarian follicles. Materials and Methods: Thirty five Formalin-fixed paraffin-embedded human ovarian tissue blocks were selected from the surgical pathology files of the department of pathology, College of Medicine, Yonsei University, for the period from 1996 to 1998. All specimen were from premenopausal women aged from $32{\sim}45$. Ovarian tissues were collected from the patients performing hysterectomy for benign uterine diseases. Immunohistochemical staining was performed for the detection of DNA fragmented cell, Bcl-2, Bax, Fas and Fas-ligand. Results: Bcl-2 and bax were not expressed on the surrounding cells and oocyte of the primary, primordial and preantral follicles. Fas and Fas-ligand (Fas-L) were not expressed on the surrounding cells on the primordial and primary follicles. But expressed on the surrounding granulosa cells and oocyte in the primordial and primary follicles. In the healthy follicles, Bcl-2 was expressed on the granulosa cells, however, Bax was not expressed. DNA fragmented cells were expressed on the inner granulosa cell layer of atretic follicles. Conclusion: Fas, Fas-ligand, and Bax may be responsible for the follicular atresia and Bcl-2 may be involved in the follicular survival in the human ovary.