• 제목/요약/키워드: ovarian cancer cells

검색결과 179건 처리시간 0.029초

상피성 난소암 세포에서 프로폴리스 추출물의 세포 증식 저해 효과 (Growth Inhibitory Effect of Extracts of Propolis on Epithelial Ovarian Cancer Cells)

  • 양가람;윤경미;오현호;김민성;황태호;안원근
    • 생명과학회지
    • /
    • 제27권7호
    • /
    • pp.834-839
    • /
    • 2017
  • Propolis는 꿀벌들이 나무로부터 수집한 천연물로서 항산화, 항염증, 항암 효과를 가지고 있어 전통의학에서 사용되고 있으며, 이러한 생리활성은 여러 가지 유용성분들이 혼합된 것과 관련이 있다. 난소암은 우리나라 여성에서 두 번째로 발병률이 높은 암이다. 대부분의 난소암 환자들은 초기에 수술적 기법과 항암요법에 우수하게 반응하지만, 항암제 내성에 의한 재발이 발생하게 되면 항암요법제에 의한 반응률이 매우 저조하여 높은 사망률을 보인다. 따라서, 난소암의 높은 치사율을 극복하기 위한 새로운 치료제 및 항암보조제의 개발이 필요하다. 본 연구에서는 인체 상피성 난소암 세포주인 A2780를 이용하여 Austalian propolis의 항암 효과와 활성기전을 조사하였다. Propolis 추출물은 농도 의존적으로 난소암 세포의 증식을 억제했으며. Flow cytometric 분석을 통해 G0/G1기에서 세포 주기 억제와 apoptosis 유도 효과를 확인하였다. 이러한 결과는 Austalian propolis의 인간 난소암에 대한 예방과 치료를 위한 보조제로서의 가능성을 제시한다.

Caffeic Acid Phenethyl Ester Inhibits Cell Proliferation and Induces Apoptosis in Human Ovarian Cancer Cells

  • Park, Hyung-Joo;Yang, Seung-Joo;Mo, Jin-Young;Ryu, Geun-Chang;Lee, Kyung-Jin
    • 환경생물
    • /
    • 제28권4호
    • /
    • pp.196-201
    • /
    • 2010
  • The phenethyl ester of caffeic acid (CAPE), an active component of honeybee propolis extract, is shown to inhibit cancer growth previously. However, studies on human ovarian cancer are largely obscure. This study evaluated the effects of CAPE as a potential anti-proliferative and pro-apoptotic agent in the human ovarian cancer line, OVCAR-3. CAPE treated OVCAR-3 cells showed inhibition of cell viability and proliferation in a dose-dependent manner by WST-1 assay, LDH assay and bromodeoxyuridine (BrdU) incorporation assay. Furthermore, CAPE-mediated OVCAR-3 cell growth inhibition was associated with apoptotic changes as evident by cell cycle arrest and accumulation of cells in the apoptotic phase and DNA fragmentation. Taken together, CAPE inhibits cell proliferation via DNA synthesis reduction and induces apoptotic cell death via DNA damage, thus elucidating a novel, plausible mechanism of CAPE anti-tumorigenic property in OVCAR-3 cells.

Nuclear DNA Damage and Repair in Normal Ovarian Cells Caused by Epothilone B

  • Rogalska, Aneta;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6535-6539
    • /
    • 2015
  • This study was designed to assess, whether a new chemotherapeutic microtubule inhibitor, Epothilone B (EpoB, Patupilone), can induce DNA damage in normal ovarian cells (MM14.Ov), and to evaluate if such damage could be repaired. The changes were compared with the effect of paclitaxel (PTX) commonly employed in the clinic. The alkaline comet assay technique and TUNEL assay were used. The kinetics of DNA damage formation and the level of apoptotic cells were determined after treatment with IC50 concentrations of EpoB and PTX. It was observed that PTX generated significantly higher apoptotic and genotoxic changes than EpoB. The peak was observed after 48 h of treatment when the DNA damage had a maximal level. The DNA damage induced by both tested drugs was almost completely repaired. As EpoB in normal cells causes less damage to DNA it might be a promising anticancer drug with potential for the treatment of ovarian tumors.

Cytotoxic Activity from Curcuma zedoaria Through Mitochondrial Activation on Ovarian Cancer Cells

  • Shin, Yujin;Lee, Yongkyu
    • Toxicological Research
    • /
    • 제29권4호
    • /
    • pp.257-261
    • /
    • 2013
  • ${\alpha}$-Curcumene is one of the physiologically active components of Curcuma zedoaria, which is believed to perform anti-tumor activities, the mechanisms of which are poorly understood. In the present study, we investigated the mechanism of the apoptotic effect of ${\alpha}$-curcumene on the growth of human overian cancer, SiHa cells. Upon treatment with ${\alpha}$-curcumene, cell viability of SiHa cells was inhibited > 73% for 48 h incubation. ${\alpha}$-Curcumene treatment showed a characteristic nucleosomal DNA fragmentation pattern and the percentage of sub-diploid cells was increased in a concentration-dependent manner, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of ${\alpha}$-curcumene, which mediates cell death. These results suggest that the apoptotic effect of ${\alpha}$-curcumene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c.

TSPAN12 Precedes Tumor Proliferation by Cell Cycle Control in Ovarian Cancer

  • Ji, Guohua;Liang, Hongbin;Wang, Falin;Wang, Nan;Fu, Songbin;Cui, Xiaobo
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.557-567
    • /
    • 2019
  • TSPAN12, a member of the tetraspanin family, has been highly connected with the pathogenesis of cancer. Its biological function, however, especially in ovarian cancer (OC), has not been well elucidated. In this study, The Cancer Genome Atlas (TCGA) dataset analysis revealed that upregulation of TSPAN12 gene expression was significantly correlated with patient survival, suggesting that TSPAN12 might be a potential prognostic marker for OC. Further exploration showed that TSPAN12 overexpression accelerated proliferation and colony formation of OVCAR3 and SKOV3 OC cells. Knockdown of TSPAN12 expression in A2780 and SKOV3 cells decreased both proliferation and colony formation. Western blot analysis showed that several cyclins and cyclin-dependent kinases (CDK) (e.g., Cyclin A2, Cyclin D1, Cyclin E2, CDK2, and CDK4) were significantly involved in the regulation of cell cycle downstream of TSPAN12. Moreover, TSPAN12 accelerated mitotic progression by controlling cell cycle. Thus, our data demonstrated that TSPAN12 could be a novel molecular target for the treatment of OC.

Synergistic Effects of PectaSol-C Modified Citrus Pectin an Inhibitor of Galectin-3 and Paclitaxel on Apoptosis of Human SKOV-3 Ovarian Cancer Cells

  • Hossein, Ghamartaj;Keshavarz, Maryam;Ahmadi, Samira;Naderi, Nima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7561-7568
    • /
    • 2013
  • Galectin-3 (Gal-3) is a carbohydrate-binding protein which is thought to be involved in cancer progression but its contribution to epithelial ovarian cancer (EOC) remains unclear. The present study sought to determine the role of Gal-3 in chemoresistance of the human SKOV-3 ovarian cancer cell line to paclitaxel (PTX) using recombinant human Gal-3 (rhGal-3) and PectaSol-C modified citrus pectin (Pect-MCP) as a specific Gal-3 competitive inhibitor. Our results showed 41% increased cell proliferation, 36% decreased caspase-3 activity and 33.6% increased substrate-dependent adhesion in the presence of rhGal-3 compared to the control case (p<0.001). Treatment of cells with a non-effective dose of PTX (100nM) and 0.1% Pect-MCP in combination revealed synergistic cytotoxic effects with 75% reduced cell viability and subsequent 3.9-fold increase in caspase-3 activity. Moreover, there was 39% decrease in substrate-dependent adhesion compared to control (p<0.001). These results suggest that inhibition of Gal-3 could be a useful therapeutic tool for combination therapy of ovarian cancer.

CR389, a Benzoimidazolyl Pyridinone Analog, Induces Cell Cycle Arrest and Apoptosis via p53 Activation in Human Ovarian Cancer PA-1 Cells

  • Suh, Hyewon;Choi, Ko-woon;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.418-422
    • /
    • 2015
  • In the course of screening for novel cell cycle inhibitors and apoptotic inducers, CR389, elucidated as 5-(1H-benzoimidazol-2-yl)-1H-pyridin-2-one, was generated as a new hit compound. Flow cytometric analysis and western blots of PA-1 cells treated with $60{\mu}M$ CR389 revealed an appreciable cell cycle arrest at the G2/M phase through direct inhibition of the CDK1 complex. In addition, activation of p53 via phosphorylation at Ser15 and subsequent up-regulation of p21CIP1 showed that CR389 also induces p53-dependent-p21CIP1-mediated cell cycle arrest. Furthermore, apoptotic induction in $60{\mu}M$ CR389-treated PA-1 cells is associated with the release of cytochrome c from mitochondria through up-regulation of the proapoptotic Bax protein, which results in the activation of procaspase-9 and -3, and the cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, CR389 seems to have multiple mechanisms of antiproliferative activity through p53-mediated pathways against human ovarian cancer cells. Therefore, we conclude that CR389 is a candidate therapeutic agent for the treatment of human ovarian cancer via the activation of p53.

Association of Reduced Immunohistochemical Expression of E-cadherin with a Poor Ovarian Cancer Prognosis - Results of a Meta-analysis

  • Peng, Hong-Ling;He, Lei;Zhao, Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2003-2007
    • /
    • 2012
  • Purpose: E-cadherin is a transmemberane protein which is responsible for adhesion of endothelial cells. The aim of our study was to assess existing evidence of associations between reduced expression of E-cadherin and prognosis of ovarian cancer with a discussion of potential approaches to exploiting any prognostic value for improved clinical management. Methods: We conducted a meta-analysis of 9 studies (n=915 patients) focusing on the correlation of reduced expression of E-cadherin with overall survival. Data were synthesized with random or fixed effect hazard ratios. Results: The studies were categorized by author/year, number of patients, FIGO stage, histology, cutoff value for E-cadherin positivity, and methods of hazard rations (HR) estimation, HR and its 95% confidence interval (CI). Combined hazard ratios suggested that reduced expression of E-cadherin positivity was associated with poor overall survival (OS), HR= 2.10, 95% CI:1.13-3.06. Conclusion: The overall survival of the E-cadherin negative group with ovarian cancer was significant poorer than the E-cadherin positive group. Upregulation of E-cadherin is an attractive therapeutic approach that could exert significant effects on clinical outcome of ovarian cancer.

MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation

  • Ma, Eunsook;Jeong, Seon-Ju;Choi, Joon-Seok;Nguyen, Thi Ha;Jeong, Chul-Ho;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.48-53
    • /
    • 2019
  • Reactive oxygen species (ROS) are widely generated in biological processes such as normal metabolism and response to xenobiotic exposure. While ROS can be beneficial or harmful to cells and tissues, generation of ROS by diverse anti-cancer drugs or phytochemicals plays an important role in the induction of apoptosis. We recently identified a derivative of naphthalene, MS-5, that induces apoptosis of an ovarian cell, CAOV-3. Interestingly, MS-5 induced apoptosis by down-regulating the ROS. Cell viability was evaluated by water-soluble tetrazolium salt (WST-1) assay. Apoptosis was evaluated by flow cytometry analysis. Intracellular ROS ($H_2O_2$), mitochondrial superoxide, mitochondrial membrane potential (MMP) and effect on cycle were determined by flow cytometry. Protein expression was assessed by western blotting. The level of ATP was measured using ATP Colorimetric/Fluorometric Assay kit. MS-5 inhibited growth of ovarian cancer cell lines, CAOV-3, in a concentration- and time-dependent manner. MS-5 also induced G1 cell cycle arrest in CAOV-3 cells, while MS-5 decreased intracellular ROS generation. In addition, cells treated with MS-5 showed the decrease in MMP and ATP production. In this study, we found that treatment with MS-5 in CAOV-3 cells induced apoptosis but decreased ROS level. We suspect that MS-5 might interfere with the minimum requirements of ROS for survival. These perturbations appear to be concentration-dependent, suggesting that MS-5 may induce apoptosis by interfering with ROS generation. We propose that MS-5 may be a potent therapeutic agent for inducing apoptosis in ovarian cancer cell through regulation of ROS.

Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells

  • Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5697-5701
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-$1000{\mu}g/ml$). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. Conclusions: Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.