• Title/Summary/Keyword: output-only acceleration

Search Result 49, Processing Time 0.056 seconds

The Development of Real-time Feedback Vibration Control System Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 실시간 Feedback 진동제어 시스템 개발)

  • Heo, Gwang Hee;Kim, Chung Gil;Ahn, Ui Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.60-66
    • /
    • 2012
  • This paper aims to constitute a feedback vibration control system using wireless sensor networks and experiment it on a model structure to verify its effectiveness. For the purpose, we set up a feedback vibration control system composed of a wireless input/output(I/O) sensor node based on bluetooth, a home-made shear type MR damper, a shaker which generates a constant size of sine wave, and a simple beam model structure. The vibration control experiment was performed by shaking the 1/4 point of beam with a shaker. At the moment of shaking, we controled the vibration with MR damper which was placed vertically on the center of beam. Simultaneously, by acquiring acceleration response at the 2/4 point of beam, we evaluated the effectiveness of control capability. The control command was set to send a voltage signal to MR damper when the acceleration response, acquired from the wireless I/O sensor node placed at the center of beam, was more than a certain amount. Although the realtime feedback vibration control system constituted in this paper is effective only within a limited command system, it has been proven that the system was able to effectively decrease the vibration of structure by generating a control command aimed for realtime purpose. The system also showed a possibility to be used as a structural response control system adapting a variety of semi-active control algorithm.

Mode identifiability of a cable-stayed bridge based on a Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.471-489
    • /
    • 2016
  • Modal identification based on ambient vibration data has attracted extensive attention in the past few decades. Since the excitation for ambient vibration tests is mainly from the environmental effects such as wind and traffic loading and no artificial excitation is applied, the signal to noise (s/n) ratio of the data acquired plays an important role in mode identifiability. Under ambient vibration conditions, certain modes may not be identifiable due to a low s/n ratio. This paper presents a study on the mode identifiability of an instrumented cable-stayed bridge with the use of acceleration response data measured by a long-term structural health monitoring system. A recently developed fast Bayesian FFT method is utilized to perform output-only modal identification. In addition to identifying the most probable values (MPVs) of modal parameters, the associated posterior uncertainties can be obtained by this method. Likewise, the power spectral density of modal force can be identified, and thus it is possible to obtain the modal s/n ratio. This provides an efficient way to investigate the mode identifiability. Three groups of data are utilized in this study: the first one is 10 data sets including six collected under normal wind conditions and four collected during typhoons; the second one is three data sets with wind speeds of about 7.5 m/s; and the third one is some blind data. The first two groups of data are used to perform ambient modal identification and help to estimate a critical value of the s/n ratio above which the deficient mode is identifiable, while the third group of data is used to perform verification. A couple of fundamental modes are identified, including the ones in the vertical and transverse directions respectively and coupled in both directions. The uncertainty and s/n ratio of the deficient mode are investigated and discussed. A critical value of the modal s/n ratio is suggested to evaluate the mode identifiability of the deficient mode. The work presented in this paper could provide a base for the vibration-based condition assessment in future.

Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses

  • Cho, Soojin;Jo, Hongki;Jang, Shinae;Park, Jongwoong;Jung, Hyung-Jo;Yun, Chung-Bang;Spencer, Billie F. Jr.;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.461-480
    • /
    • 2010
  • This paper analyses the data collected from the $2^{nd}$ Jindo Bridge, a cable-stayed bridge in Korea that is a structural health monitoring (SHM) international test bed for advanced wireless smart sensors network (WSSN) technology. The SHM system consists of a total of 70 wireless smart sensor nodes deployed underneath of the deck, on the pylons, and on the cables to capture the vibration of the bridge excited by traffic and environmental loadings. Analysis of the data is performed in both the time and frequency domains. Modal properties of the bridge are identified using the frequency domain decomposition and the stochastic subspace identification methods based on the output-only measurements, and the results are compared with those obtained from a detailed finite element model. Tension forces for the 10 instrumented stay cables are also estimated from the ambient acceleration data and compared both with those from the initial design and with those obtained during two previous regular inspections. The results of the data analyses demonstrate that the WSSN-based SHM system performs effectively for this cable-stayed bridge, giving direct access to the physical status of the bridge.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

A Study on Parallel Performance Optimization Method for Acceleration of High Resolution SAR Image Processing (고해상도 SAR 영상처리 고속화를 위한 병렬 성능 최적화 기법 연구)

  • Lee, Kyu Beom;Kim, Gyu Bin;An, Sol Bo Reum;Cho, Jin Yeon;Lim, Byoung-Gyun;Kim, Dong-Hyun;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.503-512
    • /
    • 2018
  • SAR(Synthetic Aperture Radar) is a technology to acquire images by processing signals obtained from radar, and there is an increasing demand for utilization of high-resolution SAR images. In this paper, for high-speed processing of high-resolution SAR image data, a study for SAR image processing algorithms to achieve optimal performance in multi-core based computer architecture is performed. The performance deterioration due to a large amount of input/output data for high resolution images is reduced by maximizing the memory utilization, and the parallelization ratio of the code is increased by using dynamic scheduling and nested parallelism of OpenMP. As a result, not only the total computation time is reduced, but also the upper bound of parallel performance is increased and the actual parallel performance on a multi-core system with 10 cores is improved by more than 8 times. The result of this study is expected to be used effectively in the development of high-resolution SAR image processing software for multi-core systems with large memory.

Implementation of OpenVG on Embedded Systems (임베디드 시스템을 위한 OpenVG 구현)

  • Lee, Hwan-Yong;Baek, Nak-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.335-344
    • /
    • 2009
  • Embedded systems and web browsers have started to provide two-dimensional vector graphics features, to finally support scalability of graphics outputs, while traditional graphics systems have focused on the raster and bitmap operations. Nowadays, SVG and Flash are actively used while OpenVG from Khronos group plays the role of a de facto low-level API standard to support them. In this paper, we represent the design and implementation process and the final results of an OpenVG implementation, AlexVG. From its design stage, our implementation aims at the cooperation with SVG-Tiny, another de facto standard for embedded systems. Currently, our overall system provides not only the OpenVG core features but also variety of OpenVG application programs and SVG-Tiny media file playing capabilities. For the conformance with the standard specifications, our system completely passed the whole OpenVG conformance test suites and the graphics output portions of the SVG-Tiny conformance test suites. From the performance point of view, we focused on the efficiency and effectiveness especially on the mobile phones and embedded devices with limited resources. As the result, it showed impressive benchmarks on the small-scale CPU's such as ARM's, even without neither any other libraries nor acceleration hardware.

  • PDF

Real-time Color Recognition Based on Graphic Hardware Acceleration (그래픽 하드웨어 가속을 이용한 실시간 색상 인식)

  • Kim, Ku-Jin;Yoon, Ji-Young;Choi, Yoo-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • In this paper, we present a real-time algorithm for recognizing the vehicle color from the indoor and outdoor vehicle images based on GPU (Graphics Processing Unit) acceleration. In the preprocessing step, we construct feature victors from the sample vehicle images with different colors. Then, we combine the feature vectors for each color and store them as a reference texture that would be used in the GPU. Given an input vehicle image, the CPU constructs its feature Hector, and then the GPU compares it with the sample feature vectors in the reference texture. The similarities between the input feature vector and the sample feature vectors for each color are measured, and then the result is transferred to the CPU to recognize the vehicle color. The output colors are categorized into seven colors that include three achromatic colors: black, silver, and white and four chromatic colors: red, yellow, blue, and green. We construct feature vectors by using the histograms which consist of hue-saturation pairs and hue-intensity pairs. The weight factor is given to the saturation values. Our algorithm shows 94.67% of successful color recognition rate, by using a large number of sample images captured in various environments, by generating feature vectors that distinguish different colors, and by utilizing an appropriate likelihood function. We also accelerate the speed of color recognition by utilizing the parallel computation functionality in the GPU. In the experiments, we constructed a reference texture from 7,168 sample images, where 1,024 images were used for each color. The average time for generating a feature vector is 0.509ms for the $150{\times}113$ resolution image. After the feature vector is constructed, the execution time for GPU-based color recognition is 2.316ms in average, and this is 5.47 times faster than the case when the algorithm is executed in the CPU. Our experiments were limited to the vehicle images only, but our algorithm can be extended to the input images of the general objects.