• Title/Summary/Keyword: output voltage

Search Result 4,883, Processing Time 0.038 seconds

Design and Application of a Single Phase Multilevel Inverter Suitable for using as a Voltage Harmonic Source

  • Beser, Ersoy;Arifoglu, Birol;Camur, Sabri;Beser, Esra Kandemir
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • This paper presents a single phase multilevel inverter for using as a voltage harmonic source. First, a single phase multilevel inverter system is presented and the structural parts of the inverter are described. In order to obtain multilevel output voltage waveforms, a switching strategy based on calculating switching angles is explained and an improved formula for determining switching angles is given. Simulation and experimental results of multilevel voltage waveforms are given for 15, 31 and 127 levels. The proposed topology does not only produce output voltages with low THD values. It also produces the required harmonic components on the output voltage. For this purpose, equations for switching angles are constituted and the switching functions are obtained. These angles control the output voltage as well as provide the required specific harmonics. The proposed inverter structure is simulated for various functions with the required harmonic components. The THD values of the output voltage waves are calculated. The simulated functions are also realized by the proposed inverter structure. By using a harmonic analyzer, the harmonic spectrums, which belong to the output voltage forms, are found and the THD values are measured. Simulation and experimental results are given for the specific functions. The proposed topology produces perfectly suitable results for obtaining the specific harmonic components. Therefore, it is possible to use the structure as a voltage harmonic source in various applications.

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.

Output Voltage Control Technique Using Current Forward Compensation for Phase Shifted Full Bridge Converter Without Output Capacitor (출력 커패시터가 없는 위상천이 풀브릿지 컨버터의 전류 전향 보상을 이용한 출력 전압 제어 기법)

  • Shin, You-Seung;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • At present, the low-voltage, high-current type power supply is mainly used for effective sterilization in the ballast water treatment system. Research on PSFB converters without output capacitors has been ongoing. Such converters effectively treat ballast water without a separate disinfectant through electric pulses by applying a pulse-type power to the output electrode without an output capacitor. However, in the case of the pulse-type electrolysis treatment method, voltage overshoot can occur due to abrupt voltage fluctuations when the load changes, resulting in circuit reliability problems because of the output capacitorless system. Therefore, a new voltage control algorithm is required. In this paper, we will discuss voltage control for pulsed electrolysis topology without an output capacitor. The proposed voltage control method has been verified using Simulation and experiment. The usefulness of the proposed control method has been proven by the experimental results.

DSP Control of Three-Phase UPS Inverter with Output Voltage Harmonic Compensator (3상 UPS 인버터의 출력전압 왜형률 개선을 위한 고조파 보상기법의 DSP 제어)

  • 변영복;조기연;박성준;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.269-275
    • /
    • 1997
  • This paper presents real time digital signal processor(DSP) control of UPS system feeding processor(DSP) control of UPS system feeding nonlinear loads to provide sinusoidal inverter output voltage. The control scheme is composed of an rms voltage compensator, the load current harmonics feed-forward loop for the cancellation of output voltage harmonics, and the output voltage harmonics feedback loop for system stability. The controller employs a Texas Instruments TMS320C40GFL50 DSP.

  • PDF

A stable U-band VCO in 65 nm CMOS with -0.11 dBm high output power

  • Lee, Jongsuk;Moon, Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.437-444
    • /
    • 2015
  • A high output power voltage controlled oscillator (VCO) in the U-band was implemented using a 65 nm CMOS process. The proposed VCO used a transmission line to increase output voltage swing and overcome the limitations of CMOS technologies. Two varactor banks were used for fine tuning with a 5% frequency tuning range. The proposed VCO showed small variation in output voltage and operated at 51.55-54.18 GHz. The measured phase noises were -51.53 dBc/Hz, -91.84 dBc/Hz, and -101.07 dBc/Hz at offset frequencies of 10 kHz, 1 MHz, and 10 MHz, respectively, with stable output power. The chip area, including the output buffer, is $0.16{\times}0.16mm^2$ and the maximum output power was -0.11 dBm. The power consumption was 33.4 mW with a supply voltage of 1.2-V. The measured $FOM_P$ was -190.8 dBc/Hz.

Cost-effective Design of an Inverter Output Reactor in ASD application (전동기 과전압 억제용 OUTPUT REACTOR의 최적 설계)

  • 김한종;이근호;장철호;이제필
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.65-70
    • /
    • 1999
  • In this paper, the cost-effective design of output reactor which is used to suppress the over-voltage at the motor terminal in the Adjustable Speed Drives(ASD) application is proposed. In the elevator drive system, the power cable length is relatively shorter than other ASD applications and then the over-voltage at the motor terminal depends on the frequency characteristics of the output reactor at the over-voltage operating frequency. The over-voltage suppression mechanism of output reactor in ASD application is analyzed and the dominant parameters of output reactor for the over-voltage suppression are extracted. Using these parameters as the design values and considering the high frequency characteristics of iron core in the reactor, a new cost-effective structure of output reactor is proposed. Experimental results of the conventional reactor and the proposed reactor with a 15kW induction motor are given to verify the proposed scheme.

  • PDF

Output voltage PID control of three-phase Z-source inverter by detection of output voltage and input DC voltage (출력전압과 입력직류전압 검출에 의한 3상 Z-소스 인버터의 출력전압 PID 제어)

  • WU, Yan-Jun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.171-172
    • /
    • 2011
  • The paper proposes a close loop control algorithm for Z-source inverter. The algorithm is realized by PWM duty ratio control in order to improve the output voltage to it's desired level. The controller consist of the output voltage PID controller and DC input voltage P controller. Using the DQ coordinate transformation simplify the controller design. The PSIM simulation results verify the validity by means of comparing the system with or without compensation and estimating if the system has output consistency function when ZSI's load and input voltage value changing.

  • PDF

A Multilevel Inverter Using DC Link Voltage Combination (DC링크 전압 조합을 이용한 멀티 레벨 인버터)

  • Joo S.Y.;Lee J.H.;Kang F.S.;Kim C.U.;Park S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.621-624
    • /
    • 2003
  • In this paper, a novel multilevel inverter using DC-Link voltage combination is presented to reduce the harmonics of output voltage without the output filter inductor. The proposed multilevel inverter can generate 27-level output voltage. It employs three H-bridge cells which consist of single phase full-bridge inverter module. As well as, it can make continuous output voltage level employing the properly three DC-Link voltage ratio. The validity of the proposed inverter is verified through the experimental result using a prototype which can generate a 110[Vac], 60[Hz] output voltage from 12[Vdc], 36[vdc], and 108[Vdc] input voltages

  • PDF

Torque Control of Synchronous Reluctance Motor using DC Link voltage Synthesis (DC Link 전압 합성을 이용한 동기형 릴럭턴스 전동기 토크 제어)

  • Kim, Seung-Joo;Ahn, Joon-Seon;Kim, Ki-Chan;Go, Sung-Chul;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.19-21
    • /
    • 2006
  • This paper presents the control method that inverter output keeps to linear to reference voltage of Synchronous Reluctance Motor using DC Link voltage Synthesis. The Inverter output voltage cannot be displayed to linear about inverter reference voltage if Real DC Link voltage is different from DC Link voltage of PWM amplitude. Also, the overmodulation that there is linearity broken if reference voltage is out of range that inverter can output voltage. Torque ripple generates the vibration and noise of a motor. This paper proposes the control method so that torque ripple decreases and the linearity of inverter output keeps using the DC Link voltage Synthesis.

  • PDF

Controller Design of Buck-Boost Converter with Constant Voltage Output (정 전압 출력을 갖는 벅-부스트 컨버터의 제어기 설계)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.42-50
    • /
    • 2015
  • The Buck-Boost converter consisted of two switches is more expensive than the conventional Buck converter, because of the increase of the components. However, it can control the DC voltage depending on the requested load voltage without additional circuits, because it can control the voltage under the relatively wide range of the load. Additionally, it can control the output voltage constantly under the variation of the input voltage. In the paper two control loops consisted of current and voltage control are designed. When two controllers are operated at the same time the problem of the output voltage is occurred. Therefore, the solution of the output voltage problem is proposed. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype system rated at 1kVA.