A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.
Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.
International journal of advanced smart convergence
/
제7권1호
/
pp.24-32
/
2018
An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3815-3835
/
2022
Density-based outlier detection is one of the hot issues in data mining. A point is determined as outlier on basis of the density of points near them. The existing density-based detection algorithms have high time complexity, in order to reduce the time complexity, a new outlier detection algorithm DODMD (Density-based Outlier Detection in Multidimensional Datasets) is proposed. Firstly, on the basis of ZH-tree, the concept of micro-cluster is introduced. Each leaf node is regarded as a micro-cluster, and the micro-cluster is calculated to achieve the purpose of batch filtering. In order to obtain n sets of approximate outliers quickly, a greedy method is used to calculate the boundary of LOF and mark the minimum value as LOFmin. Secondly, the outliers can filtered out by LOFmin, the real outliers are calculated, and then the result set is updated to make the boundary closer. Finally, the accuracy and efficiency of DODMD algorithm are verified on real dataset and synthetic dataset respectively.
A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.
본 논문의 목표는 분위수 자기회귀모형을 활용하여 시계열 자료에서 특이치를 발견하는 알고리즘을 제안하고, 기존의 방법들과 그 성능을 비교하여 실제 주가 조작 사례에 적용해 보는 것이다. 지금까지의 특이치 발견 연구는 대부분 일반적인 데이터 형태에서만 있어왔기 때문에 시계열 데이터에서의 연구는 미미한 편이다. 또한 모수적인 방법에만 제한되었는데, 모수적 모형은 복잡할 뿐만 아니라 소요되는 분석 시간도 길기 때문에 편리하지 않다. 따라서 본 연구에서는 분위수 자기회귀모형을 활용한 특이치 발견 알고리즘을 새롭게 제시하고, 다양한 경우의 모의실험을 통해 기존 알고리즘과 비교하도록 한다. 특히 시계열 자료에서의 특이치 발견은 주가 조작을 적발하는 데에 유용하게 활용될 수 있다. 시간에 따라 관측되던 주가가 갑자기 그 동안의 흐름에서 벗어나 특이치로 발견되었다면 혹시 인위적인 개입으로 조작된 것은 아닌지 의심해 볼 수 있기 때문이다. 따라서 실제 주가 조작 사례에 적용해 봄으로써 얼마나 빠른 시일 내에 주가 조작을 적발해 낼 수 있는지 살펴보았다.
Many procedures are available to identify a single outlier or an isolated influential point in linear regression and logistic regression. But the detection of influential points or multiple outliers is more difficult, owing to masking and swamping problems. The multiple outlier detection methods for logistic regression have not been studied from the points of direct procedure yet. In this paper we consider the direct methods for logistic regression by extending the $Pe\tilde{n}a$ and Yohai (1995) influence matrix algorithm. We define the influence matrix in logistic regression by using Cook's distance in logistic regression, and test multiple outliers by using the mean shift model. To show accuracy of the proposed multiple outlier detection algorithm, we simulate artificial data including multiple outliers with masking and swamping.
Outlier detection is an imperative task to identify the occurrence of abnormal events before the structures are suffered from sudden failure during their service lives. This paper proposes a two-phase method for the outlier detection of Global Positioning System (GPS) monitoring data. Prompt judgment of the occurrence of abnormal data is firstly carried out by use of the relational analysis as the relationship among the data obtained from the adjacent locations following a certain rule. Then, a negative selection algorithm (NSA) is adopted for further accurate localization of the abnormal data. To reduce the computation cost in the NSA, an improved scheme by integrating the adjustable radius into the training stage is designed and implemented. Numerical simulations and experimental verifications demonstrate that the proposed method is encouraging compared with the original method in the aspects of efficiency and reliability. This method is only based on the monitoring data without the requirement of the engineer expertise on the structural operational characteristics, which can be easily embedded in a software system for the continuous and reliable monitoring of civil infrastructure.
Journal of the Korean Data and Information Science Society
/
제22권3호
/
pp.449-458
/
2011
불법 오물 투기는 정부가 당면한 시급한 문제들 중의 하나이다. 최근 들어 관련기관들은 실시간으로 연속적으로 수질의 상태를 감지 할 수 있는 화학적 산소요구량 자동측정기를 강과 하천 등에 설치하고 있다. 본 논문에서는 시계열 간섭모형을 이용하여 화학적 산소요구량 자동측정기로부터 발생하는 데이터를 분석하여 투기시점이라고 여겨지는 이상점을 탐지하는 알고리즘을 R언어를 이용하여 구현한다. R을 이용한 알고리즘을 통해 단계별 계산에서 수동 작업을 피할 수 있기 때문에 알고리즘의 자동화를 달성할 수 있고, 한 단계 더 나아가 모의실험에서 사용될 수 있을 것이다.
최근의 네트워크 침입탐지 시스템은 기존의 시그너처(또는 패턴) 기반 탐지 기법에 비정상행위 탐지 기법이 새롭게 결합되면서 더욱 발전되고 있다. 일반적으로 시그너처 기반 침입 탐지 시스템들은 기계학습 알고리즘을 활용함에도 불구하고 사전에 이미 알려진 침입 패턴만을 탐지할 수 있었다. 이상적인 네트워크 침입탐지 시스템을 구축하기 위해서는 침입 패턴이 저장된 시그너처 데이터베이스를 항상 최신의 정보로 유지해야 한다. 따라서 시스템은 유입되는 네트워크 데이터를 모니터링하고 분석하는 과정에서 새로운 공격에 대한 시그너처를 생성할 수 있는 기능이 필요하다. 본 논문에서는 이를 위해 밀도(또는 영향력) 함수를 이용한 새로운 아웃라이어 클러스터 검출 알고리즘을 제안한다. 제안된 알고리즘에서는 네트워크 침입 패턴을 하나의 객체가 아닌 유사 인스턴스들의 집합 형태인 아웃라이어 클러스터로 가정하였다. 본 논문에서는 KDD 1999 Cup 침입탐지 데이터 집합을 이용한 실험을 수행하여, 침입이 자주 발생하는 상황에서 본 논문의 방법이 유클리디언 거리를 이용한 기존의 아웃라이어 탐지 기법에 비해서 좋은 성능을 보임을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.