• Title/Summary/Keyword: out-of-band emission

Search Result 79, Processing Time 0.029 seconds

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Effects an Acoustical Equipment on the Luring of Fish School (음향집어기의 집어 효과)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.4
    • /
    • pp.75-82
    • /
    • 1986
  • A field experiment was carried out to clarify the effect of underwater sound on the luring of fish school. The effects of. the acoustic emission on the luring of fish school were checked actually at a set net fishing site in Namhae using a commercial acoustic equipment, Dairyo-8. An emitting system of sound was designed by the authors, and the ambient noise, the sound pressure level and the reaction of fish school were measured in the set net. 1. The predominent frequency band of ambient noise was 150Hz-400Hz,.and the sound emitted was 400Hz-100Hz. The sound pressure level of ambient noise in set net was higher at the landing part, and lower at the playgrond, the gate of court and "the enterance of inclined "passage. The ambient noise was increased with the time elapse-d at the stage of hauling net, but :it was decreased suddenly at the final stage due probably to the decrease of the swimming speed of the fish school. 2. The results of the observation and the recording paper of echo sounder indicate that the effect of emitting sound in the bag net of set net was remarkable for the luring of fish school in the early stage, but decreased after 30 minutes. The reaction of fish school is more sensitiv2 to the sound pressure level than the time intervals between the emission and the pause. For the purpos~ of practical use, it is nesessary to confirm what kind of sound pressure level is the best for the luring of fish school. 3. In response to the acoustic equipment(Dairyo-8), fish school started to swarm 20 minutes after the sound emission and scattered when the sound paused. As the emitting pattern of the acoustic equiment, the three seconds of emission after one second of pause was more effective than the continuous emission at the set net fishing ground. Catch of the fish(s during th~ sound ernissio:l at the gate of court was three to five times more than that of no emission.

  • PDF

MIRIS: Science Programs

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwangil;Pyo, Jeonghyun;Lee, Dae-Hee;Park, Youngsik;Ree, Chang Hee;Moon, Bongkon;Park, Sung-Joon;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Cha, Sang-Mok;Lee, Sungho;Yuk, In-Soo;Ahn, Kyungjin;Cho, Jungyeon;Lee, Hyung Mok;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • The main payload of Science and Technology Satellite 3 (STSAT-3), Multipurpose InfraRed Imaging System (MIRIS) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. ${\times}$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide-band imaging and the Paschen-${\alpha}$ emission line survey. After the calibration of MIRIS in our laboratory, MIRIS has been delivered to SaTReC and successfully assembled into the STSAT-3. The main purposes of MIRIS are to perform the observation of Cosmic Infrared Background (CIB) at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-${\alpha}$ emission line. CIB observation enables us to reveal the nature of degree-scale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The MIRIS will continuously monitor the seasonal variation of the zodiacal light towards the both north and south ecliptic poles for the purpose of calibration as well as the effective removal of zodiacal light. The Pashen-${\alpha}$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

Correlation between terahertz characteristics and defect states in LTG-InGaAs

  • Park, Dong-U;Kim, Jun-O;Lee, Sang-Jun;Kim, Chang-Su;Lee, Dae-Su;No, Sam-Gyu;Gang, Cheol;Gi, Cheol-Sik;Kim, Jin-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.243-243
    • /
    • 2010
  • Low-temperature grown (LTG) InGaAs epilayers were grown by MBE technique for studying a correlation between terahertz (THz) emission and the intrinsic defects. The 1.2-um-thick Be-compensated LTG-InGaAs epilayers were prepared on SI-InP:Fe substrate at $200-250^{\circ}C$, and subsequently in-situ annealed under As environment at $550^{\circ}C$ for 5-30 minutes. The carrier concentration/mobility and the crystalline structure were analyzed by the Hall effect and the x-ray diffraction (XRD), respectively, and the carrier lifetime were determined by the fs time-resolved pump-probe spectroscopy. THz generation from LTG-InGaAs was carried out by a Ti-sapphire laser (800 nm) of a pulse width of 190 fs at a repetition of 76 MHz. Figure shows the spectral amplitude of generated waves in the THz region. As the growth temperature of epilayer increases, the amplitude is enhanced. However, two samples grown at $200^{\circ}C$, as-grown and annealed, show almost no difference in the spectral amplitude. This suggests that the growth temperature is critical in the formation of defect states involved in THz emission. We are now investigating the correlations between the XRD band attributed to defects, the Hall parameter, and the spectral amplitude of generated THz wave.

  • PDF

Ionized Fe Objects in UWIFE survey and IGRINS

  • Kim, Yesol;Koo, Bon-Chul;Pyo, Tae-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2017
  • The UKIRT Wide-field Infrared survey for Fe+(UWIFE) is an unbiased survey of the first Galactic quadrant, with narrow-band filter centered on $1.644{\mu}m$. This survey covers $7^{\circ}$ < l < $62^{\circ}$ and |b| < $1.5^{\circ}$, where active interaction of stars and interstellar medium is expected. With median seeing of 0.8 arcsec, 5 - sigma detection limit of 18.7 mag and surface brightness limit of $8.1{\times}10^{-20}W\;m^{-2}arcsec^{-2}$, this survey gives an opportunity to statistically study Galactic [Fe II] - emitting sources for the first time. In order to identify Ionized Fe Objects (IFOs) in survey area systematically, we conducted visual inspection and automatic detection simultaneously. Total of ~300 extended IFOs are identified, most of them are found out to be part of supernova remnants (SNRs), young stellar objects, HII regions and planetary nebulae. The majority of IFOs are new discoveries which reveal shocked structures in high-extinction region. Spatial distribution of IFOs suggest that they trace Galactic structure. As a part of spectroscopic follow-up, we observed SNR candidate IFO J183740.829-061452.41 with IGRINS (Immersion Grating Infrared Spectrograph, Yuk+2010), mounted on 2.7m Harlan Smith telescope. This unknown arc-like, 6'-long IFO is coincident with inner part of radio continuum loop G25.8+0.2, which has been known as HII region. However, interior of this radio shell is filled with diffuse soft X-ray emission, and possible association of hard X-ray pulsar / pulsar wind nebula makes the nature of the IFO unclear. The H and K-band 2D spectrum shows shock-ionized [Fe II] filaments, which is apart from photoionized HII filaments. In this presentation we present basic statistics of newly identified IFOs, as well as the follow-up study of IFO J183740.829-061452.41.

  • PDF

KoDSat System Level EMC(Electro Magnetic Compatibility) Test and an Analysis of the Test Results (검증위성 시스템레벨 전자기파(EMC) 시험 및 결과에 대한 분석)

  • Seo, Min-Seok;Park, Seok-Jun;Sim, Eun-Seop;Kim, Se-Yeon;Chae, Jang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.102-109
    • /
    • 2006
  • In this paper, the system level EMC radiated emission test results of KoDSat(Korea Demonstration Satellite), its affects upon the Launch vehicle and H/W improving methods regarding its over exceed value of EMC specification are discussed. Regarding its over exceed value, we estimated that DAU of KoDSat generated the exceeded EMC noise source, and these test results were analyzed using the EMC2000 tool to find out how did it affect the FTS(Flight Termination Subsystem) of KSLV-1(Korea Small Launch Vehicle). To diminish the EMC noise source of UHF(430.1Mhz) band level, we redesigned the DAU power board to be applied the various schemes for EMI noise reduction such as grounding, shielding and EMI filtering, and also verified these reworks to analyze its diminishing affects in UHF band level by means of performing the DAU box level EMC test and performing the second KoDSat's system level EMC test.

Patterned Arrays of Well-Ordered ZnO Nanorods Assisted with Polystyrene Monolayer By Oxygen Plasma Treatment

  • Choi, Hyun Ji;Lee, Yong-Min;Lee, Yulhee;Seo, Hyeon Jin;Hwang, Ki-Hwan;Kim, Dong In;Yu, Jung-Hoon;Kim, Jee Yun;Nam, Sang Hun;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.146-146
    • /
    • 2016
  • Zinc Oxide (ZnO) was known as a promising material for surface acoustic wave devices, gas sensors, optical devices and solar cells due to piezoelectric material, large band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. In particular, the alignment of ZnO nanostructures into ordered nanoarrays can bring about improved sensitivity of devices due to widen the surface area to catch a lot of gas particle. Oxygen plasma treatment is used to specify the nucleation site of round patterned ZnO nanorods growth. Therefore ZnO nanorods were grown on a quartz substrate with patterned polystyrene monolayer by hydrothermal method after oxygen plasma treatment. And then, we carried out nanostructures by adjusting the diameter of the arranged ZnO nanorods according to polystyrene spheres of various sizes. The obtained ZnO nanostructures was characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM).

  • PDF

MID- AND FAR-INFRARED PROPERTIES OF LOCAL ACTIVE GALACTIC NUCLEI

  • Ichikawa, Kohei;Ueda, Yoshihiro;Terashima, Yuichi;Oyabu, Shinki;Gandhi, Poshak;Matsuta, Keiko;Nakagawa, Takao
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.275-279
    • /
    • 2012
  • We investigate the mid-infrared (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the infrared survey catalogs of AKARI, IRAS and WISE. Out of 135 non-blazar AGNs in the Swift/BAT 9-month catalog, we obtain the MIR photometric data for 128 sources in either the 9, 12, 18, 22, and $25{\mu}m$ band. We find a good correlation between their hard X-ray and MIR luminosities ranging three orders of magnitude (42 < log ${\lambda}L_{\lambda}$(9, $18{\mu}m$) < 45), which is tighter than that with the FIR luminosities at $90{\mu}m$. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori models rather than homogeneous ones.

Filter orthogonal frequency-division multiplexing scheme based on polar code in underwater acoustic communication with non-Gaussian distribution noise

  • Ahmed, Mustafa Sami;Shah, Nor Shahida Mohd;Al-Aboosi, Yasin Yousif;Gismalla, Mohammed S.M.;Abdullah, Mohammad F.L.;Jawhar, Yasir Amer;Balfaqih, Mohammed
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.184-196
    • /
    • 2021
  • The research domain of underwater communication has garnered much interest among researchers exploring underwater activities. The underwater environment differs from the terrestrial setting. Some of the main challenges in underwater communication are limited bandwidth, low data rate, propagation delay, and high bit error rate (BER). As such, this study assessed the underwater acoustic (UWA) aspect and explored the expression of error performance based on t-distribution noise. Filter orthogonal frequency-division multiplexing refers to a new waveform candidate that has been adopted in UWA, along with turbo and polar codes. The empirical outcomes demonstrated that the noise did not adhere to Gaussian distribution, whereas the simulation results revealed that the filter applied in orthogonal frequency-division multiplexing could significantly suppress out-of-band emission. Additionally, the performance of the turbo code was superior to that of the polar code by 2 dB at BER 10-3.

Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization

  • Lakshmanan Kumaresan;Gurusamy Shanmugavelayutham;Subramani Surendran;Uk Sim
    • Journal of the Korean Ceramic Society
    • /
    • v.59
    • /
    • pp.338-349
    • /
    • 2020
  • Large scale with high-purity hexagonal aluminum nitride nanoparticles (AlN NPs) was synthesized using DC thermal plasma arc discharge method (TPAD). Argon gas was used as the plasma forming gas, while ammonia (NH3) gas was used as the reactive gas, which was fed into the reactor at a constant flow rate of 5 LPM. In order to optimize the process for high yield, the experiments were carried out at various plasma input powers, such as 1.5, 3.0, and 4.5 kW. Following the optimization, to examine the influence of using pure nitrogen gas, an experiment was also carried out in the nitrogen ambience. The phase identification and structural determination of the synthesized NPs were carried out using XRD and Raman spectroscopic analyses. While the morphology, particle size, and elemental compositions of the synthesized NPs were observed from SEM, HRTEM, XPS, and EDX analyses. The photoluminescence response was confirmed from the PL spectrum. The PL emission peaks observed around 440 nm (2.8 eV) and 601 nm (2.07 eV), respectively, which correspond to the UV blue and red band emissions of both AlN and Al/AlN NPs. The results show that the synthesized nano-AlN NPs exhibit excellent crystallinity with a high yield of approximately 210 g/h. The current plasma technology can be regarded as a perfect potential process for developing nano-AlN powders with improved efficiency.